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Abstract

We study the classification of special almost hermitian manifolds in Gray and Hervella’s type
classes. We prove that the exterior derivatives of tl#hl&r form and the complex volume form
contain all the information about the intrinsic torsion of 81&(n)-structure. Furthermore, we apply
the obtained results to almost hyperhermitian geometry. Thus, we show that the exterior derivatives
of the three Kahler forms of an almost hyperhermitian manifold are sufficient to determine the three
covariant derivatives of such forms, i.e., the three mentioned exterior derivatives determine the intrinsic
torsion of theSp(n)-structure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In 1955, Bergefl] gave the list of possible holonomy groups of non-symmetric Rieman-
nianm-manifolds whose holonomy representation is irreducible. Such a list of groups was
complemented with their corresponding holonomy representations, i.e., it was also speci-
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fied the action of each group on the tangent space. Consequently, eactGyo§|(m)
in Berger’s list gives rise to a geometric structure. Moreover, the grGupay be given as
the stabilisers it§ O(m) of certain differential forms ofR™. ForG = G2, itis a three-form
¢ onR7; for G = Spin(7), itis a four-formg onR8; for G = Sp(n)Sp(1), itis a four-form
22 onR*: for G = U(n), a Kahler formw onR?", etc. Such forms are a key ingredient in
the definition of the correspondin@-structure on a Riemannian-manifold M. Further-
more, the intrinsic torsion of &-structure, defined in next section, can be identified with
the Levi-Civita covariant derivatives of the corresponding forms and is always contained in
W=T*M @ g, beingso(m) = g ® g. The action ofG splits W into irreducible com-
ponents, sayV = Wy @ - - - @ Wj. Then,G-structures oM can be classified in at most
2* classes.
This way of classifyings-structures was initiated by Gray and Hervg8$ where they
considered the cage = U(n) (almost Hermitian structures), turning gt = Wy & Wo @
W3 @ Wy, forn > 2, i.e., there are sixteen classes of almost Hermitian manifolds. Later, di-
verse authors have studied the situation for o@structuresGo, Spin(7), Sp(n)Sp(1), etc.
Inthe present paper we study the situationdoe SU(n). Thus, we consider Riemannian
2n-manifolds equipped with a&hler formw and a complex volume former = v, +iy_,
called special almost Hermitian manifolds. The gréuf() is the stabiliser irf O(2n) of
andy. Therefore, the information about intrinsic torsion of&i(n)-structure is contained
in Vw andV¥, whereV denotes the Levi-Civita connection. For high dimensions:>28,
we find

T*M @ su(n)t = Wi @ Wo @ W3 & W4 & W,

where the first four summands coincide with Gray and Hervella’s ones/\éng 7M.
Besides the additional summaW, another interesting difference may be pointed out: all
the information about the torsion of tl§é/(n)-structurepn > 4, is contained in the exterior
derivatives & and d/, or dw and d/_. This happens similarly for anoth@rstructures, d

is sufficient to classify &pin(7)-structure, & is sufficient to know the intrinsiSp(n) Sp(1)-
torsion,n > 2, etc. However, we recall that«ds not enough to classify &(n)-structure,

we also need to search in the Nijenhuis tensor for the remaining information. Moreover, the
importance ofSU (n)-structures from the point of view of geometry and theoretical physics
makes valuable a detailed description of the involved terlgarandV¥. Here we describe

V¥ which complements the study ®fw done by Gray and Hervella.

The paper is organised as follows. In Sectiynve start discussing basic results. Then
we pay attention to the study of special almost hermitiaminifolds of high dimensions,
2n > 8. However, some results involving the cages 2, 3 are also given. For instance,
forn > 2, we prove the invariance under conformal changes of metric of a certain one-form
related with part3V4, andWs of the intrinsic torsion. This is a generalization of a Chiossi
and Salamon’s result f&fU (3)-structureg3].

In Section3, we study special almost Hermitian manifold of low dimensions. Such
manifolds of six dimensions have been studied3h Here we show some additional
detailed information. Whem = 1, 2, 3, the number of special peculiarities that occur is big
enough to justify a separated exposition. In particular, we prove that, for these manifolds,
dw, dy+ anddy,_ are sufficient to know the intrinsic torsion.
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Finally, as examples ofU (2n)-structures, we consider almost hyperhermitian manifolds
in Sectiond4. We show that the exterior derivative®d dw; and dvog of the Kahler forms
are enough to compute the covariant derivatves, Vo andVwg . This implies Hitchin’s
result[9] thatifw;, w; andwg are closed, then they are covariant constant, i.e., the manifold
is hyperkahler. Furthermore, we prove that locally conformal hygétkr manifolds are
equipped with thre8U (2n)-structures of typ@Vs & Ws, respectively associated with the
almost complex structurés]andK. As a consequence of this result, we obtain an alternative
proof of the Ricci flatness of the metric of hypétiter manifolds.

2. Special almost Hermitian manifolds

An almost Hermitianmanifold is a 2-dimensional manifoldV, n > 0, with aU(n)-
structure. This means thistis equipped with a Riemannian metti¢c-) and an orthogonal
almost complex structure Each fibre7,, M of the tangent bundle can be consider as
complex vector space by definig = Ix. We will write 7,, Mc when we are regarding
T,,M as such a space.

We define a Hermitian scalar produgt-)c = (-, -) + iw(:, -), wherew is the Kahler
form given byw(x, y) = (x, Iy). The real tangent bundléM s identified with the cotangent
bundleT*M by the mapx — (-, x) = x. Analogously, the conjugate complex vector space
T,n M is identified with the dual complex spa&g M¢ by the mapr — (-, x)¢c = x¢. It
follows immediately thakc = x + i lx.

If we consider the spaces$”T,; M¢ of skew-symmetric complex forms, one can check
xc Ayc = (x +iIx) A (y +ily). There are natural extensions of scalar products'fy; M
andAPT; Mc, respectively defined by

2n
{a,b) = % Z a(eiy, - - -, ei,)b(eiy, ..., e€i,),

whereeq, .. ., e2, is an orthonormal basis for real vectors and. . ., u,, is a unitary basis
for complex vectors.
The following conventions will be used in this papemlis a (Q s)-tensor, we write

Inb(Xe, ..., Xi, ..., Xs) = =b(Xa, ..., IX;, ..., Xy),

Ib(Xl’ LRI XS) = (_1)Sb(IX17 R ]XS)a l[b = (I(l) + e + I(s))b,

Lb)= > Iplpb. s=2. (2.1)
1<i<j<s

A special almost Hermitiamanifold is a z-dimensional manifoldM with an SU(n)-
structure. This means that( (-, -}, I) is an almost Hermitian manifold equipped with a
complex volume form# = v + ivy_ such that¥; ¥)c = 1. Note thatl;yr, = y_.
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If e1,...,e, is a unitary basis for complex vectors such thide, ...,e,) =1, i.e.,
Yilel,...,ey) =landy_(e1,...,e,) =0, thenes, ..., e, les, ..., Ie, is an orthonor-
mal basis for real vectoradaptedto the SU(n)-structure. Furthermore, i is a matrix
relating two adapted basis of &0/ (n)-structure, them € SU(n) € SO(2r). On the other
hand, it is straightforward to check

" = (—1)"(”+1)/2n! e1N---Ney ANler A--- A ley,

whereo” = o A ... ro.
If we fix the formVol such that £ 1)'"+1/2,1 Vol = " as real volume form, it follows
next lemma.

Lemma 2.1. Let M be a special almost Hermitigtn-manifold, then

) vrho=v_Aw=0;
(ii) fornodd, we havey, A v_ = —(—=1)" D221yl andyy Ay =¥ AY_ =
0;
(i) forneven,wehave, A vy = y_ Ay_ = (=120 yprandy . A y_ = 0;
(iv) forn > 2andl <i < j<n, ¥+ = =¥ and Iy l¥— = —¢_; and
(V) x Ay = Ix Ay = —(Ix_y4+) A w and xoy = Ixp—, for all vector x, wherey
denotes the interior product

Proof. All parts follow by a straightforward way, taking the identities

V4 = Re(eac A -+ A eyc), Y- = Im(eic A -+ Aenc)s (2.2)
n
o= Z Ie; N e, (2.3)
i=1
into account, wherey, ..., e, les, ..., Ie, is an adapted basis to t8& (n)-structure. Note

that parts (ii) and (iii) can be given together by the equation
nW AW = "(—1y D2 O

We will also need to consider the contraction gf-form b by a skew-symmetric con-
travariant two-vector A y, i.e., (c A y)ub(x1, ..., xp_2) = b(x, y, x1, ..., xp_2). When
n > 2, itis obvious that{x A y)_y+ = —(x A y)a—. Furthermore, let us note that there
are two Hodge star operators defined Mn Such operators, denoted Byand xc, are
respectively associated with the volume forkag andw.

Relative to the real Hodge star operator, we have the following results.

Lemma 2.2. For any one-formu we have

* k(U A Y) AYL) = * (kA Po) AY) = =202y,
*C( AP ) A ) = =k (R A Y AY) =202
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Proof. The identities follow by direct computation, taking Ej2)into account. [J

We are dealing witli-structures wher€ is a subgroup of the linear grodpL (m, R). If
M possesses@-structure, then there always existS-@onnection defined av. Moreover,
if (M™, (-, -)) is an orientablen-dimensional Riemannian manifold af&lis a closed and
connected subgroup 610(m), then there exists a unique metéeconnectiorv such that
£, = V, — V, takes its values i+, whereg! denotes the orthogonal complementdin)
of the Lie algebrg of G andV denotes the Levi-Civita connecti¢h3,4]. The tensok is
theintrinsic torsionof the G-structure and’ is called theminimal G-connection

For U(n)-structures, the minimal (n)-connection is given by = V + &, with

ExY = —31(VxI)Y. (2.4)

se€5]. Sincel(n) stabilises the Ehler formw, it follows thatVew = 0. Moreover, the equa-
tion&x (1Y) + I(§xY) = 0 impliesVw = —&w € T*M ® u(n)*. Thus, one can identify the
U(n)-components of with the U(n)-components oV w.

For SU(n)-structures, we have the decompositian(2n) = su(n) + R + u(n)*, i.e.,
su(n)t = R + u(n) L. Therefore, the intrinsiSU (n)-torsionn + & is such thah € T*M ®
R = T*M and¢ is still determined by Eq(2.4). The tensors, ¥, andy_ are stabilised
by the SU(n)-action, andVvew = 0, Vi, = 0 andVy_ = 0, whereV = V + 5 + £ is the
minimal SU(n)-connection. Sincé&/ is metric andn € T*M ® R, we have(Y, nxZ) =
(In)(X)w(Y, Z), wheren on the right side is a one-form. Hence

nxY = In(X)1Y. (2.5)

We can checlgw = 0, then fromVw = 0 we obtain:

(i) forn=1,Vo = —éw € T*M @ u(1)*+ = {0};
(i) for n =2, Vo = —w € T*M @ u(2)* = Wo + Wy;
(iii) for n > 3, Vo = —fw € T*M @ u(n)t = Wi + Wo + Wz + Wy,

where the summandg/; are the irreduciblé/(n)-modules given by Gray and Hervella
[8] and+ denotes direct sum. In general, these spaesire also irreducible asU (n)-
modules. The only exceptions arg; andW, whenn = 3. In fact, for that case, we have
the following decompositions into irreducibi/(3)-components,

Wi=Wr+w:, i=12
where the spacévjr (W;") consists in those tensawiss W, € T*M ® A?T*M such that

the bilinear fornv(a), defined by 2(a) = (x4, yoa), is symmetric (skew-symmetric).
On the other hand, sincéyr, = 0 andVy_ = 0, we haveVy,. = —nyr, — &Y, and

Vy_ = —ny_ — &Y_. Therefore, from EqH2.4) and (2.5)we obtain the following ex-
pressions
—nxYs = —nIn(X)P-, —Ex¥r = 3(eiaVxw) A (e -), 26)
—nx¥— =nIn(X)Y4,  —Ex¥_ = —3(einVxw) A (einvrs),

where the summation convention is used.
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It is obvious that—ny. € Wg = T*M @ ¥ and —ny— e Wg = T*M ® y4. The
tensors—&y,. and —&y_ are described in the following proposition, where we need to
consider the twaU (n)-maps

ELLE_T*M@un)t - T"M @ A"T*M

respectively defined bW - w — 1/2(e;aV - w) A (ejay—) and V- w — —1/2(e; 1V -
o) A (ejoyr4). Likewise, we also consider th8U(n)-spaces [7°] = {Re(bc)|bc €
APT*Mc) of realp-forms. Thus, R%°] = R, [A1°] = 7*M and, forp > 2, [A?0] =
{be APT*M|I;HIhb=—b,1<i < j< p}. We write [»7-9] in agreeing with notations
used in[13,5].

Proposition 2.3. For n > 3,the SU(n)-mapsE, and E_ are injective and
EL(T*M @un)t) = E_(T*M Qun)*) = T"M @ [M" %] A w.

For n = 2,the mapsE; and E_ are not injectivebeing
ker8, =T"M Q ¥, ker2_ =T*M ® ¥,
EL(T*M Qu2)t) = E_(T"M Qu(2)*) = T"M ® .

Proof. We considern > 2. As the real metri¢-, -) is Hermitian with respect th we have
I(Vxw) = —Vxwo [8], for all vectorX. But this is equivalent to

n

Vxw = Z (ainE(ei(C A ej(C) + bijlm(ei(c A ej(C)) c |[)\-2’O]I,

1<i<j<n

wherees, ..., e, le1, . .., Ie, is an adapted basis. Takig.6)into account, it is straight-
forward to check

n

E+(Vxw) = — Z aijRetc(eic Aejc)) Ao

1<i<j<n

n
+ Y bylm(xclec Aeje)) Aw e [A20] A,
1<i<j<n
n

E_(Vxw) = — Z aij|m(>l<(c(e,-(c A ej(c)) AW

1<i<j<n

n
— Y bijRefcleic Aeje)) Ao e [A20] Aw.

1<i<j<n

From these equations Proposition followd.]
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For sake of simplicity, for > 2, we denotéV= = T*M @ [A"~2°] A w. Moreover,
we will considerthe mag : T*M @ A"T*M — T*M ® A"T*M defined by

L(b) = 1))+ -+ + Lnt1)b. (2.7)
Proposition 2.3and above considerations give rise to the following theorem where we
describe the properties satisfied by 8ié&(n)-components oV, andVyr_.

Theorem 2.4. Let M be a special almost Hermitid&r-manifold,n > 4, with Kéhler form
w and complex volume for®r =, + iy_. Then

Vi € WE+ W5 + W5 + W5 + W,

Vy_ e WE + W5 + W5 + W5 + Wi,

whereWs = 8.(W,) = E_(W)), Wi = T*M ® ¥+ andWg = T*M ® y_. The mod-
ulesW?= are explicitly described by

WE ={e®@Ie; AbAw+e ®e Alyb Aw|b e [A"39]),

W5 = (b e WE|L(b) = (n — 2)band a(b) A » = 0},

WE + WS = (b e WE| L(b) = (n — 2)b),

W5 = {b e W= |a(b) = 0},

Wi ={e®((xne) ) Awlxe TM) = {e; @ (x Aei)ap-) Aw|x € TM),
WE +WE = (b e WE | L(b) = —(n — 2)b},

wherea denotes the alternation map.

Proof. Some parts of Theorem follow by computing the imaQyg(Vw); of theW;-part of
Vw, taking the properties fan; given in[8] into account, and others, with Schur’'s Lemma
[2] in mind, by computing2 4 (a), where O£ a € W,;,. O

If we consider the alternation maps ~ W& + Wi — A"TLT* M we getthe following
consequences dheorem 2.4

Corollary 2.5. For n > 4,the exterior derivatives of,. andy_ are such that
dyrp, dy— € T*M A A2 Aw = Wi + W5+ W5,

where a:(WE) =W, ax(WV5) =W4 and ax(W5) = a=(WE) = W4 5. Moreover,
ker(a+) = )/\/3E + A4, whereT*M = A4 C WE + Wd, and the modulesVy are de-
scribed by

Wi = [A" 30 A w A o,

Wi={beT*MA[MN2] Aw|bAw=0andxb Ay, =0}
=beT*MA[N2)Aw|bArw=0andxbAy_ =0},

Wis=T*"MAYyy =T*MAy_ =110 no.
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Note also that
WIAWE={beT*M AV 2] Aw| b Ay =0}
={beT*MA[MN"2) Aw| xbAy_ =0},
W+ Wis={beT*MA[A2] Aw|bAw=0}

In this point we already have all the ingredients to explicitly describe the one+form
This will complete the definition of th8U (n)-connectionV.

Theorem 2.6. For anSU (n)-structure n > 2,theWs-partn of the torsion can be identified
with —nyy = —nln @ ¥_ or —nyy— = nln ® ¥, wheren is a one-form such that

*(xdyys Ay 4 *dy_ AY_) =n2" 1y + 2" 2 1d o,

or

w(xyy A Y_ — sxdy_ A Yy) = n2" g — 2" ’dFw.
Furthermore, ifn > 3, thenxdy+ A ¥ = xdy_ A _ and xdyp A y— = — s dip_ A
Vs

Proof. We prove the result for > 4 and we will see the cases= 2, 3 in next section. The
Wia-part of Vw is given by 24 — 1)(Vw)s = ¢; @ e; Ad*w + ¢; @ Ie; A Id*w [8]. Then,
by computingZ . (Vw)s, we get

1
(V¢+)4 = —m

Now, since V¢4)s = —niIn ® ¥_, we have

e; ® ((d*w A ) a¥1) A . (2.8)

A (V¥)a+ (Viry)s) = —3(d* oy ) Aw —nln Ay = —(31d*0 + nn) A ¥y
Hence, theV; s-part of d. is given by

(@0 )as = (o1 + SId°w) A . (2.9)

Finally, takingLemma 2.2nto account, it follows

*(dyry A Yy) = #((dys)as A ¥y) = 02" 20 + 23 dF o,
#(edfy A Y-) = x(dY)as A Y-) = n2" 2y — 2" 3w,
The identities for ¢_ can be proved in a similar way.[]
Remark 2.7.
(i) Itis known that/d*w = *(xdw A w) = —(-_dw, w). ThereforeTheorem 2.&ays that,

for n > 3, n can be computed fromugland dj; (or dyy_). Forn = 2, we will need
dw, dyr+ anddy,_ to determine the one-form
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(iiy From EQ.(2.9), it follows that A, C ker(a4) is given by

Ay = e,-®((x/\e,-)41ﬂ+)/\w—1x®w|x€TM}.

1
{_Z(n—l) 2

Analogously, forA_ < ker(a_), we have

1 1
A— = {—Mei®((eri)J¢_)Aa)+2x®w+|xe TM}

Since d € W1+ Wz + Wy and diy, dy— € Wi + W35 + Wy g, all the information
about the intrinsic torsion of afiU (n)-structuren > 4, is contained in @ and dj (or
dy_). We recall that, for d&/(n)-structuren > 2, we need the Nijenhuis tensor and tb
have the complete information about the intrinsic torsion.(2@) andTheorem 2.Gjive
us the componentd/s andWs of Vi, in terms of dv and dj.. For sake of completeness,
we will compute the remaining parts &f in terms of & and d/,.. To achieve this,
let us study the behavior of the coderivativésgid, d*_ and the forms v and d y_
respectively defined by the contractionVf/, andVy_ by o, i.e.,

dj)l//+(Y1, cos Yno1) = Vi (lej, Y, ..., Y1)

and an analog expression givesyd. .

Note thatdvyy = — xd * Yy, and dy_ = — xd x y_. By Lemma 2.1whennis odd
(even), sy = —(—1y' 2y and sy = (1) 2y, (xyy = (—1y D2y,
andsy_ = (—1y"*t1/2y,_). Therefore, byCorollary 2.5 it is immediate that

d* Y, d*y_ € «(T*M A [A"720] A w) = W + W5 + Wy,

where the moduleV; are described in the following lemma.

Lemma 2.8. Forn > 4, W = %(T*M A [12"~29] A w) and L the map defined 4g.1),
the modulesVy, W, andW, s are defined by:

WE =[V39 Ao,

Wi ={aeW|larwAw=0anda ¢y =0},

WE + Wy ={a e W|—2L(a) = (n — 2)(n — 5)a} = {a € W£la Ay =0},
Wis=[A""10] = {xoyry | x € TM]),

W5 +Wis={ae Wlanwnw=0}

Proof. It follows by applying= to theWW modules ofCorollary 2.5
For the description olV; + Wy involving the mapL. Taking Proposition 2.3into
account, we consideVyy =x®b A w e T*M ® [A"~%°] A w. Now, making use of
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Theorem 2.4we obtain the/VS + W5-part of Vi,

(n=2)Vy + L(Vyy) 1
201 —2) ~2

(V)2 = x®@bAw+ Ix® [1)b A w). (2.10)
Then, we compute (dr1)12 = d*(Vi4)12 and check—2L(d*y4)12 = (n — 2)(n —
S)(d*Yi)12. O

In the following result, (8v.); and (4, v ); ((d*y_); and (4, _); ) respectively denote
the images by the maps dnd g, of theW,;-component oy (Vy_). This notation for
theW;-part of a tensor will be used in the following.

Lemma 2.9. For n > 3and the map, given by(2.1), the formsd*y, d*y_, df v and
d’ v, satisfy

(@Y i)12 = —(d¥-)12, Ay )2 = (d¥)2,

(A Y1 )a = (A ¢ )a. (A5 Y1 )a = —(d"Y_)a,

(@ Yy)s = —(dy¥-)s = oy, (d¥4)s = —(d*Y-)s = nnoyr—,
i@ )2 = —3)(dy)r2,  i(dyi)2 = —(n — 3)(d Y12,
if(d*Ye)a = —(n — (A ¥x)a,  ir(dy)a = (n — 1)(d Yr)a.

Proof. Here we only considet > 4, the proof forn = 3 will be shown in next section.

The identities of fourth and fifth lines follow by similar arguments to those contained in the

proof of Lemma 2.8 The identities of the third line follow by a straightforwardly way.
Making use of the map8., E_ and Eq.(2.6), we note

(V-¥)12=(Vr-¥i)12, (V¥ )za=—(Vi-¥y)za. (2.11)

Hence, applying the maps @nd d; to both sides of these equalities, the identities of first
and second lines in Lemma follow.[

We know how to computeMvr4 )4 and V¢4 )s (EQ.(2.8)andTheorem 2.5. Now, we
will show expressions for the remainisd@/(n)-parts of Vi in terms of dv and dj ..

Proposition 2.10. Let M be a special almost Hermitian 2n-manifold> 4. Then

N (V-yn=e®@leiAbro+e@eANlpprow, (dYi)1=-2bAoAw, (d
Y =2[pb Ao and (A yy)1=-2bAw, where b is given byb=
Im(xc (Vo)1 + ila)(Vo)1)), 12(-1)'b = I % (dyry A w), 12(1)'Iayb = I % (d*
Vi AwAw),or 121" =1« (A v+ Ao A w);

(i) (V-yi)2=ei@ei ()12 Ao+ e @ lej (A" Y )12 Aw—8(Vyy)1, where
4(n — 2)(@)12 = (n — 1)(n — 2)a + 2L(a), for a = d* Y4, & 4;

(i) 2(V - ¥1)3 = E4((1 — I(2)](3))(dw)3), where(dw)s = (dw)3z 4 — (dw)4 with 4(dw)3 4
— 3dw + L(dw) and(n — 1)(dw)s = —Id*w A .
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Proof. By Theorem 2.4(V -y )1 =¢; @ le; AbAw+e; ®e; Al1)b A w, Whereb e
[1"~39]. Therefore, (d/1)1 = —2b A @ A w. On the other hand, it is not hard to check
x(CAwAwAw)=6(=1)""1l, (2.12)
for all ¢ € [A"~39]. Therefore, taking this last identity into account, we have
*(dyy A @) = *((dy4 )1 A o) = 12(-1)""11b.
Now, let us assum¥Fw = ¢ € [A139] = Wy. Then, computingE.,(c), we have
Ei(c) = e ® Ie; AlM(xc(c +iI1)c)) Aw —e; ® e; ARefee(c +i1(1)c)) A w.
Hence the first identity fob follows. The remaining identities of (i) involving*g-,. and
d’ v follow by a straightforward way fromVyr )1, taking Eq.(2.12)into account.
For part (ii). If Vyy =x®@bAwe T*M @ [1"%°], by Eq. (2.10) we have
2(Vyi)i2 = (x ® b A w+ Ix @ I1)b A w). Therefore, making use of part (i), it follows

6(VYi)1 =€ ® le; A (xalyb) A w + ¢; @ e; A L1)(x2l)b) A w.

Moreover,
2(d*Y1)12 =Ix Ab—x A I)b — 2(x2b) A w, (2.13)
2(d )12 =x A b+ Ix A )b — 2(xb) A w. (2.14)

From these equations, it is not hard to check
ei ®ei (A )12 A w+e ® lei (d* )12 Ao =2(Vii)12 + 6(VYi)r.
Hence the first identity of (ii) follows. Furthermore, hgmma 2.8 we have the equalities
—2L(d"Y4)1.2 = (n — 2)(n — 5)(d*Y4)1,2,
—2L(d"Y4)a5 = (n — 1)(n — 2)(d* Y4 )a5.
Therefore,
4n — 2)(dYy)r2 = (n — 1) — 2)d"yry + 2L(d"Yy),
4(n — 2)(d* Y1 )as = —(n — 2)(n — B)d" Yy — 2L(d"Y4).

The required expression for{¢/; )12 can be deduced in a similar way.
Finally, part (iii) follows from identities foVw given in[6,8]. O

Remark 2.11.

(i) Fromthe identities given ihemma 2.9the forms dy and ¢y, can be computed in
terms of d/ (dyr_). ThusProposition 2.1@orroborates our claiming that, fer> 4,
dw and d (dyr_) are enough to know the intrins&Z/ (n)-torsion.
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(i) Taking Eqg. (2.11) into account, it is not hard to deduce the respectiié(n)-
componentsy > 4, of Viy_ from those ofVi ...

Relative with conformal changes of metric, we point out the following facts which are
generalizations of results f&tU(3)-structures proved by Chiossi and Salarf@ln

Proposition 2.12. For conformal changes of metric given by-), = €2/ (-, -}, theW, and
W parts of the intrinsicSU (n)-torsion,n > 2, are modified in the way

1
Id*w, = Id*w — 2(n — 1)df; no =1n——df,
n

wherew, andn, are respectively the &iler form and théVs one-form of the metri¢, -),,.
Moreover, the one-forn(n — 1)n — Id*w is not altered by such changes of metric.

Proof. On one hand, the equation fod*w, was deduced if8]. On the other hand, from
Vio =Yy andy_, = & y_, we have @4, = nedf Ay + ey anddy_, =
nedf A y_ + ¢ dy_. Moreover, ifx, is the Hodge star operator for, ), anda is a
p-form, thensx,a = €20~ P)f « o. Taking this last identity into account, we deduce

*0(*0d¢+0 A w+0) + *0(*0d¢—0 A 1uﬁ—o)
= (ki A Yy) + x(xdy_ A y_) —n2"ldf
The required identity fon, follows from this last identity and’heorem 2.6Finally, it is
obvious that 2(n — 1), — Id*w, = 2n(n — 1)y — Id*w. O

Remark 2.13. By Proposition 2.12for n = 3, the one-form 12 — Id*w is not altered
by conformal changes of metric. [8], Chiossi and Salamon consider six-dimensional
manifolds withSU (3)-structure and prove that the tensey3 + 21y, is not modified under
conformal changes of metric, wheng, andr), are one-forms such that, in the terminology
here used, are given by)3, = —Id*w and 2y, = n + Id*w. Note that 3y, + 21y, =
3(12n — Id*w).

3. Low dimensions

In this section we consider special almost Hermitian manifolds of dimension two, four
and six.

3.1. Six dimensions

Here we focus our attention on the very special case of six-dimensional manifolds with
SU(3)-structure (sef8]). In this case, we have

Vo e T*M @ u@B)" = W + Wy + W5 + W, + Ws+ Wa. (3.1)
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If we denote [*Mc Qc A?T*Mc] = {Re(bc) | be € T*Mc Qc A°T*Mc}, some
summands if3.1) are described by
Wi =Ryy,  W; =Ry,
Wi + W5 = (b € [T*Mc ®c A’T*Mc] | (o4, -b) is symmetrig,
W +W, = {b e [T*Mc ®c A2T*Mc] | (- 5+, -1b) is skew-symmetric

By Proposition 2.3the SU(3)-mapsg. andE_ are injective and
EL(T*MQuB) ) =E_(T"M uBB)H) =T*M @ T*M A w.
In the following theorem we describe properties of §ié(3)-components oV, and
V.

Theorem 3.1. Let M be a special almost Hermitian simanifold with Kahler formw and
complex volume forn¥ = ¢, +iy_. Then

Vi € WE WP 1 W5 + WP + W + Wi + Wy,
Vo e WEH Wi + W5+ WEP + WE + WS + W,

where W& = B, W) = 8-W;), WP =8,0W)=8-W)), i=1.2 W=
ELW)=E-W), j=34 WE=T"M®y, and Wy = T*M @ y_. If WE =
T*M @ T*M A w, L is the map defined bf2.7) and a denotes the alternation map, the
modulesV;*, Wi andW¥ are described by

Wla;azRei@)ei/\w, Wla;bzRei@)Iei/\a),

WS = (b € WE| (blei, ei, -, ), w) = 0, blei, Iej, -, -) = Oand L(b) = b},

W5 = (b € WB| (ble;, Iei, -, -), w) = O, blei, e;, -, -) = Oand L(b) = b},

W+ WP L WS - Wi = (b e WE | L(b) = b},

W5 = {b € WE| L(b) = —band a(b) = O},

WE ={e; ® (x A er)avry) Awlx € TM) = {e; @ ((x A e)a¥-) A wlx € TM},

WE +WE = (b e WE | L(b) = —b).
Proof. We can proceed in a similar way as in the prooffokorem 2.4 [

If we consider the alternation maps ™ T*M @ T*M A o + W& — AYT*M, we get
the following consequences dheorem 3.1

Corollary 3.2. For SU(3)-structuresthe exterior derivatives of, andy_ are such that
dyry, dy— € AYT*M = Wi + W5 + W,

where ax (W) = WA, a=(W5") = W5 and ax(W5) = a=(WE) = 4 5. Moreover
Ker(ds) = Wi + W5 + W5 + Ax, whereT*M = A € W§ + WZ, and the mod-
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ulesW are described by

Wi =Row A w,
Wi =suB)Aw={be A*T*M |bAw=0and xb Ay =0)
={be A*T*M|bAw=0and xbAy_ =0},
Wis=T*"MAYy, =T*"MAy_ =[12") no
={x Wy Ao|lxeTM}={x1y_ ANw|x € TM}.

Moreover, we also have

WE WS ={be A*T*M| xb Ay =0 ={be A*T*M | xbAy_ =0},
W+ Wi ={be A*T*M|bArw=0}.

In this point, one can proceed as in the proof, for high dimensioriBhebrem 2.6nd
obtain the results of such Theorem foe= 3. Along such a proof we would get

(V¥i)a = E4(Vo)a = — e @ (d*w A ) yry) Ao, (3.2)

(Y4 )as = —(3n + 210" 0) A Py (3.3)
Likewise, in a similar way, we would also obtain

(V¥ )a=E (Vo)a=—3¢ @ (d*w A e) ) Ao, (3.4)

(dy—)as = —(3n + 31" w) A Y-, (3.5)
Remark 3.3.

(i) From Eq.(3.3), it follows that A C ker(ay) is given by
Ay = {—zllei QUxAe) i )Aw— %x ®VY_|x € TM}.

Analogously, from Eq(3.3), for A_ C ker(a-), we have
A-={-}e@(xrne)y-)Aw+ 3x @Yy |x € TM).

(i) Theorem 2.6says thaty can be computed fromegland dj (dyy_). Moreover, since
dw € Wi + Wy + W3+ Wy and

dl/f+ S M + VV% + Mﬁ = Zl+OE+(VVT + WE + W4) + Zl+(Wg),
dy_ e Wi + W5+ Wi 5 =a o8B (W] + WJ +Wa) +a_(WVg),

we need d, dyy and d/_ to have the whole information about the intrinSi (3)-
torsion.
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TheW, andWs parts of Vi, are given by Eq(3.2)andTheorem 2.6As in the previous
section, for sake of completeness, we will see how to compute the remaining peits.of
by using d, dyr, and d/_. For such a purpose, we study properties of the coderivatives
d*y4, d*y_ and the two-forms fy, and d y_. Note that, byLemma 2.1 we have
d*yry = xdy_ and d_ = — x dyy. Therefore,

d g, d Y, Aoy, diy € APT*M = W + W5 + Wy,

whereWy = «(Wg), W5 = +(W3) andWy 5 = x(Wg 5).
Lemma 3.4. For SU(3)-structuresthe modulesVy, W; andW; 5 are defined by

W =Rw, W5 =1{be A’T*M|bAwAw=0andbA yy =0},
WE 4+ WS ={be A2T*M | Ib = b} = {b € A’T*M |b A ¢4 = 0},
Wis = [120] = (x vy | x € TM},

WS +Wis=1{be A’T*M|bAwAo=0}

Proof. It follows by similar arguments as in the proofioddmma 2.8 [

Now one can prove the identities givenliemma 2.9for n = 3. Such a proof can be
constructed in a similar way that the onefior 4, taking analog results féiU(3)-structures
into account. Such identities will be used in the following proposition, where we compute
someSU(3)-parts of Vi .

Proposition 3.5. Let M be a special almost Hermitian six-manifold. Then

) (V- ¥i)1e = —w'fei ®e Ao, (dy_)1 = Zwi’_ oA owand(d*yi) = 4wfw, where

wy is given byl2w! = x(dy— A w) = (xd¥_, ) or (Vw)1.4+ = wi ¥y

(i) (V- ¥y =wie®lei Aw, ()1 =-2w; wAw and (d*y_ )1 = 4w o,
wherew; is given by—12w; = *(dyy A w) = (xdy4, @) or (Vw)1.— = wy ¥_;

(iii) (V- Yi)100 = —(kdr_. ) & ® e; Ao+ 1o(I2) — I1y) xdpr_, where 1, : T*
MQT*M — T*M @ T*M A w defined by,(a ® b) = a ® b A w;

(V) —4(V - ¥y)12p = (xdiy, ) €; @ Tej A w + 1,(1+ I1)l(2) * dyry and —2(chyry )12
= -y, ) o Aw+ oA A+ Lyle) «dy,;

(V) 2(V-y1)3 = E+((1— [(2)/(3)(dw)3), where (dw)z = (dw)3 s — (dw)s  with
4(dw)3.4 = 3cw + L(dw) and2(dw)s = —Id*w A .

Proof. For part (i). If Vo)14+ = wi ¥4, w] € R, by Theorem 3.1we obtain ¥yr1)1,, =
Ei(Vo)i14 = —wiei®e Awand Vy_)1p = E_(Vo)1.4 = —w'fei ® le; A w. There-
fore, (dy_)1 = Zw%w A w.Onthe other hand, sineeA w A w = 6 Vol, we havex(dy— A
w) = *#((dy_)1 A ) = 12w1' = (xdy_, w).

For part (ii). By an analog way, sinceV)y,— =w; ¥—, w; € R, we have
(V¥ )1y = E4(Vo)1,— = wy ¢ ® Ie; A w. Therefore, (@)1 = —2w; o A w. Hence
we havex(dyy A o) = #((dYy )1 A o) = —=12w] = (xdyry, w).
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For part (iii). If Vi = x ® y A w, by Theorem 3.1we have
AVYi)2a =xQ@y A0+ yQ@xAw+IxQ@IyAw+Iy® Ix A w.
Therefore, 2 )12 = —2(x, o+ Ix Ay —xAly. Since (d*Yy,w) =12w] =
r:aZ\fg, y) and Zy([d* )12 =2x, ) () —@x®@y+yQx+ Ix® Iy+ Iy ® Ix), we

20 Iy (d* )12 + (A" Yy, w)e; @ e A w = —4(Vry)1,24.

On the other hand, sindéd*y;)1.2 = —(d*¥4)1.2 andI(d* vy )as = —(d*Yy )a 5, it fol-
lows 2(d" )12 = d*yy + Id*yy. Thus,

oIy — I2)d" Yy + (d* Y4, w)e; ® e; A w = —4(VYi)1, 20

Finally, taking dy, = *dy_ into account, the required identity in (iii) follows.
For part (iv). We proceed in a similar way as in the proof for (iii), but now we consider

AVYi )12 =x@ YA — YR x A0+ IxQIyAwo—IyQ Ix Nw

and we compute (th4)1.2. Thus we have 2(h/ ;)12 = —2w(x, y)o +x Ay + Ix A Iy.
Since (¢,y1)1 = (d*y_)1 = 4w] © = —So(x, y)o, we obtain

20, (A5 )12 + (A Yy, w)e; @ Tep A w = 4(Vry)12p.
Finally, taking 2(d, )12 = 2(d*y_)12 = d*y_ + Id*"y_anddy_ = — x dy intoac-
count, itfollows the first required identity in (iv). By alternating both sides of such an identity,
the second required equation follows. Part (v) follows as in the pro®froposition 2.10
for(Vyy)s. O

Remark 3.6. From the map&£ ., E_ and identitieg2.6), it is not hard to prove

(Vv )12 = (Vi ¥)12p, (V- )12p = —(Vi-¥)120,
(V¥ )3a=—(Vi-¥i)34.

Thus, taking these identities into account, one can deduce the resgé{B)ecomponents
of Viy_ from those ofvy,. .

The following results are relative to nearlyaKler six-manifolds.

Theorem 3.7. Let M be a special almost Hermitian connected six-manifold of Wje+
W1 + Ws which is not of typé/Vs such thatVe = wi ¢ + wj ¥_, then
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(i) Vo is nowhere zerax = (w})? + (wy)? is a positive constant andw; = —w7 In,
dwi = wi'lr;;
(i) the one-formiy is closed and given 8wy = wi dwy — wi dwy;
(iiiy Mis of typew; + Wy if and only ifw] andw; are constant
(iv) If Mis of typeW! + Ws, then M is of typeV; or of typeWs.
(v) If Mis of typeW; + Ws, then M is of type/V; or of typeWs.

Proof. SinceM is of dimension six, it is straightforward to check
oV )AL =@y )AY_=xAwAw=—-2xIx, (3.6)
oYy )AY_ =W )NV =IxAoAw=2x%x, (3.7)

for all vectorx.
SinceM is of typeW; + Wy + Ws, we have

do = 3w] ¥y + 3w ¥, (3.8)

dyy = 2wiwAw—-3InAY_, (3.9)

dy_ = 2w'fa)/\w+31n/\ {1/ (3.10)
Now, differentiating Eqs(3.9) and (3.10and using Eq(3.8), we have

0=2(dw; —3wi ) AwAw+3dIn Ay, (3.11)

0= 2(dw + 6w In) A w A w+ 3dIn A Py (3.12)

Butdin € A’T*M = Row + su(3)+ u(3)- and d 31 = x4 Therefore,

din A Yy = (xo¥g) A Yy, din A - = (xaprg) A Y.

Taking these identities into account and making use of 808) and (3.7)from Eqs(3.11)
and (3.12)it follows

%x = Idw] + 3win = —dw] — wi In. (3.13)

On the other hand, differentiating E(B.8), making use of Eqg3.9) and (3.1Q)and
takingx A ¥ = Ix A ¥_ into account, we obtain

0= (dw'f + 3wi In — Idw] — 3w‘l"77) Ay,

Therefore, taking Eq(3.13)into account, we gefdw; + 3wfn = dwir +3w; In=0.
Thus, dv; = SwILIn and duf = —3wj In. Moreover, & = 2(wfdwf + w;dw;) =0.
SinceM is connected, it # 0 in some point, thea # 0 everywhere. Now, it is immediate
to check &Iy = widw] — wydw! and 3kdIn = 2dw] A dwy = 0. Thus, parts (i) and
(ii) of Theorem are already proved.

Parts (iii), (iv) and (v) are immediate consequences of parts (i) and (i).

Remark 3.8. In [7], Gray proved that iM is a connected nearlydtler six-manifold (type
Wi) which is not Kahler, therM is an Einstein manifold such th&ic = 5«(, -), where



F.M. Cabrera / Journal of Geometry and Physics 55 (2005) 450-470 467
Ric denotes the Ricci curvature. [12], showing an alternative proof of such Gray’s result,
we make use ofheorem 3.7

3.2. Four dimensions
Now, let us pay lead our attention to manifolds wiih (2)-structure.

Theorem 3.9. Let M be a special almost Hermitian four-manifold with#ér formw and
complex volume forn¥ = ¢, +iy_. Then

VY eT"M Qw+T*M Qy_, Vy_eT"M Qw+T*M Q ry,

andE2L(Wh) = E.(Ws) = T*M ® w. Inthis casethe spacéV = W, + W, of covariant
derivatives ofo also admits the relevasity/ (2)-decompositiolV = T*M Q@ ¢+ + T*M ®
Y_, beingker EL = T*M @ ¥_ andker E_ = T*M ® ¥4..

If we consider the one-forms, andé_ defined byVo =&, @ v, +&_ @ v, i.e.,
& =(V.w,¥y)andé_ = (V- w, ¥_). The two decompositions @fare related as fol-
lows:

(i) EeWrifandonlyifé, = I6_.
(i) EeWyifandonlyifé, = —15_.
Moreover, we have the following consequences of last Theorem.

Corollary 3.10. For SU(2)-structuresthe exterior derivatives of., ¥_ andw are such
that

dyy = =& Ao —2p APy = (Eoy- — 2n) A Yy,
dy_ =—6 Aw—2AY_ =—(E Y +20) AV,
do = (§+ — E-) Ay = (4 ¥- — - ¥y) Ao
Hence the one-forms,, £_ andy satisfy
=& - + 2n = x(xdyy A Yy, E— ¥y + 2n = x(xdy— AY_),
%__Jlﬁ+ — §+Jw_ = *(*dw AN a))
Therefore, byLemma 2.2we have

Ay = x(xdyy A i) + #(xdy— A Y_) — x(xdo A ),
286y = x(xdy— A Y) — x(xdyp A ¥y ) 4+ x(xdow A w),
26, o = w(xdy_ A Y_) — #k(xdyy A Yy) — #(xdo A ).
Thus we can conclude that all the information aboutSar(2)-structure is contained in

dw, dyy anddyr_ . Moreover, from these identities, the equalitiesifoe 2 contained in
Theorem 2.6ollow.
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By Proposition 2.12for conformal changes of metric given gy -), = €2/ (-, -), we
haveld*w, = Id*w — 4df andn, = n — 1/2df. The one-formg. and{_ are modified
inthewayé,, = &y —dfay_, &, =& +dfy,, wheres,, andé_, are the respective
one-forms corresponding to the mettic-),. In fact, such identities can be deduced taking
the expression R,w, = ¢2/{2Vw — ¢; ® ¢; A Idf — ¢; ® Ie; A df} into account, where
V, is the Levi-Civita connection of, -),.

3.3. Two dimensions

Finally, let us consider special almost Hermitian two-manifolds. For these manifolds we
haveVw = 0. Therefore,

VY =—-M®Y_-=-ny-QYy-_+n-¥1 ®Y- e R+ R,
VYy_ =M@Y+ =n¥- Q@Y+ —n-¥4+ @Y+ e R+R,

wheren = ny ¥+ + n—y_. Furthermore, ¢y = —n_w € Rw and d/_ = n;w € Ro.
Consequentlyyy = — = dyy_ andn_ = xdyr,..
With respect to the curvature,kf denotes the sectional curvature, it can be checked

KW, vo) = din(¥y, ¥-) = dipy (W) + dp— () — 12 — n2.

For conformal changes of metric given by-), = ¢2/ (-, -), the intrinsicSU(1)-torsion is
modifiedintheway/n,, = n, —df(y)ande/n_, = n_ —df(y_),i.e.,n, = n— df.

Remark 3.11. Let us consider an special almost Hermitianr®anifold,n > 2, which is
Kahler (typeWs). In such manifolds we have

Yy = —nnp Ay = —nIn Ay, dy— =—nn Ay =nln Ay

By differentiating these identities, it followspdh ¥, =dnp Ay _ =0 and dnp A ¥y =
din A y— = 0. Therefore, ¢, dIn € su(n) + Ro.

4. Almost hyperhermitian geometry

A 4n-dimensional manifoldM is said to bealmost hyperhermitignif M is equipped
with a Riemannian metri¢-, -) and three almost complex structurgsJ, K satisfying
I1?=J%=—1andK = IJ = —JI,and(AX, AY) = (X, Y),forall X, Y € T,M andA =
I, J, K. This is equivalent to saying th has a reduction of its structure groupSe(n).

As it was pointed out in Sectio®, each fibreT,, M of the tangent bundle can be consider
as complex vector space, denofedM ¢, by defining k = Ix.

OnT,, Mc, there is anSp(n)-invariant complex symplectic formw;c = w; + iwg and
a quaternionic structure map defined foy> Jy. Taking our identification oM ¢ with
T*Mc,x — (-, x)c = xc, into account (we recall, -)c = (-, -) + iws(:, -)), it is obtained



F.M. Cabrera / Journal of Geometry and Physics 55 (2005) 450-470 469

wc = Jeic A ejc,wherees, ..., ey, Je1, - -+, Je, iSaunitary basis for vectors. Therefore,
wic = (—1)"(”+1)/2n! eic A~ Ne,c ANJeic A A Jeyc.

Hence, we can fixl; = v + iy, defined by 1y +1/2p1 @, = o', as complex
volume form.

By cyclically permuting the dles ofl, J andK in the above considerations, we will
obtain two more complex volume fornds; andWwg. Thus,M is really equipped with three
SU(2n)-structures, i.e., the almost complex structurdandK, the complex volume forms
vy, ¥, and¥g and the common metri¢, -). We could say thaM has aspecial almost
hyperhermitiarstructure. Furthermore, we also have

(=102 — 1)1 dw; = (dwy + idwk) A (g + o) L.

Hence, we can computeyg, and dj;— from dw; and dvg. Likewise, making use of
considerations contained in Sectidghand 3 Vw; can be computed fromagf, dy/;+ and
dy;_. By a cyclic argument, the same happensVar; andVwg.

Theorem 4.1. In an almost hyperhermitian manifqlthe covariant derivative¥w;, Vaw;
and Vo of the Kahler forms and the covariant derivatives2 = ZZA:,’LK wa N Vou
are determined by the exterior derivativés;, dw; anddwg.

In otherwords, @, dw; and dvg contain all the information about the intrinsic torsion of
an Sp(n)-structure and the intrinsic torsion, determinedw ([14,10), of the underlying
Sp(n)Sp(1)-structure. In relation with last Theorem, we recall Swann’s r¢sdltthat, for
4n > 12, all the information about the covariant derivatwe is contained in the exterior
derivative d2 = 2 ,_; ; x wa A dw,. Furthermore, one of the consequences of previous
Theorem is the Hitchin’s resu[®] that if the three Khler formsw;, w; andwg of an
almost hyperhermitian manifold are all closed, then they are covariant constant. Almost
hyperhermitian manifolds with covariant constariifer forms are callethyperlahler
manifolds. Such manifolds are Ricci-flat.

If the two almost Hermitian structures determined apdJ are locally conformal i&hler
(typeWis), then the one determined Byis also locally conformal Ehler[11]. Furthermore,
in such a case, the three structures have common Lee form. We recall that the Lee form is
defined byvy = —1/(2n — 1)Ad * wa, A = 1, J, K [8]. Therefore, in such a situation we
really have docally conformal hyper&filer manifold. Let us compute the intrinsic torsion
of the SU(2n) 4-structuresA = I, J, K. ForA = I, we get

1

dy; = (C1y+D/2(, — 1)

l@A(a)j—i-ia)[()n =nld AVYy,

wheref = 0; = 0; = 6. Therefore, ;1 = né A ¥y and, byTheorem 2.6we obtain
that theWs-part of the torsion is determined by

1
-~ dw;=——06.
M= onen—1)"" 17 "2
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Proceedingin a similar way fdrandK, we obtaim; = n; = ng. Furthermore, note that the
relevant one-formi2(2n — 1)n; — Id*w;, given byProposition 2.12vanishes. In summary,
we have the following result.

Theorem 4.2. For a locally conformal hyperdtiler manifold of dimensioAn and a non
null Lee-formy, the threeSU (2n)-structures are of typ®Vs + Ws. Moreover the Ws-part
of each one of such structures is determined by the same oneferml1/2n 6.

As consequences of this Theorem, we have some results relative to algleenknani-
folds.

Corollary 4.3.

(i) If the threeSU(2n)-structures of an almost hyperhermiti@n-manifold are of type
Wa, then the manifold is hypeakier.
(i) For hyperlahler manifolds, the intrinsic torsion of ead/(2n)-structure vanishes.

Remark 4.4. Special almost Hermitian manifolds with zero intrinsic torsion can be called
SU(n)-Ké&hler manifolds The metric of such manifolds is Ricci flat. Thui@orollary 4.3is
an alternative proof of the Ricci flathess of the hy@dller metrics.
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