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Abstract

We study the classification of special almost hermitian manifolds in Gray and Hervella’s type
classes. We prove that the exterior derivatives of the Kähler form and the complex volume form
contain all the information about the intrinsic torsion of theSU(n)-structure. Furthermore, we apply
the obtained results to almost hyperhermitian geometry. Thus, we show that the exterior derivatives
of the three K̈ahler forms of an almost hyperhermitian manifold are sufficient to determine the three
covariant derivatives of such forms, i.e., the three mentioned exterior derivatives determine the intrinsic
torsion of theSp(n)-structure.
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1. Introduction

In 1955, Berger[1] gave the list of possible holonomy groups of non-symmetric Rieman-
nianm-manifolds whose holonomy representation is irreducible. Such a list of groups was
complemented with their corresponding holonomy representations, i.e., it was also speci-
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fied the action of each group on the tangent space. Consequently, each groupG ⊆ SO(m)
in Berger’s list gives rise to a geometric structure. Moreover, the groupsGmay be given as
the stabilisers inSO(m) of certain differential forms onRm. ForG = G2, it is a three-form
φ onR7; forG = Spin(7), it is a four-formϕ onR8; forG = Sp(n)Sp(1), it is a four-form
Ω onR4n; for G = U(n), a Kähler formω onR2n, etc. Such forms are a key ingredient in
the definition of the correspondingG-structure on a Riemannianm-manifoldM. Further-
more, the intrinsic torsion of aG-structure, defined in next section, can be identified with
the Levi-Civita covariant derivatives of the corresponding forms and is always contained in
W = T ∗M ⊗ g⊥, beingso(m) = g⊕ g⊥. The action ofG splitsW into irreducible com-
ponents, sayW =W1 ⊕ · · · ⊕Wk. Then,G-structures onM can be classified in at most
2k classes.

This way of classifyingG-structures was initiated by Gray and Hervella[8], where they
considered the caseG = U(n) (almost Hermitian structures), turning outW =W1 ⊕W2 ⊕
W3 ⊕W4, forn > 2, i.e., there are sixteen classes of almost Hermitian manifolds. Later, di-
verse authors have studied the situation for otherG-structures:G2,Spin(7),Sp(n)Sp(1), etc.

In the present paper we study the situation forG = SU(n). Thus, we consider Riemannian
2n-manifolds equipped with a K̈ahler formω and a complex volume formΨ = ψ+ + iψ−,
called special almost Hermitian manifolds. The groupSU(n) is the stabiliser inSO(2n) ofω
andΨ . Therefore, the information about intrinsic torsion of anSU(n)-structure is contained
in ∇ω and∇Ψ , where∇ denotes the Levi-Civita connection. For high dimensions, 2n ≥ 8,
we find

T ∗M ⊗ su(n)⊥ =W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5,

where the first four summands coincide with Gray and Hervella’s ones andW5 ∼= T ∗M.
Besides the additional summandW5, another interesting difference may be pointed out: all
the information about the torsion of theSU(n)-structure,n ≥ 4, is contained in the exterior
derivatives dω and dψ+, or dω and dψ−. This happens similarly for anotherG-structures, dϕ
is sufficient to classify aSpin(7)-structure, dΩ is sufficient to know the intrinsicSp(n)Sp(1)-
torsion,n > 2, etc. However, we recall that dω is not enough to classify aU(n)-structure,
we also need to search in the Nijenhuis tensor for the remaining information. Moreover, the
importance ofSU(n)-structures from the point of view of geometry and theoretical physics
makes valuable a detailed description of the involved tensors∇ω and∇Ψ . Here we describe
∇Ψ which complements the study of∇ω done by Gray and Hervella.

The paper is organised as follows. In Section2, we start discussing basic results. Then
we pay attention to the study of special almost hermitian 2n-manifolds of high dimensions,
2n ≥ 8. However, some results involving the casesn = 2,3 are also given. For instance,
for n ≥ 2, we prove the invariance under conformal changes of metric of a certain one-form
related with partsW4 andW5 of the intrinsic torsion. This is a generalization of a Chiossi
and Salamon’s result forSU(3)-structures[3].

In Section3, we study special almost Hermitian manifold of low dimensions. Such
manifolds of six dimensions have been studied in[3]. Here we show some additional
detailed information. Whenn = 1,2,3, the number of special peculiarities that occur is big
enough to justify a separated exposition. In particular, we prove that, for these manifolds,
dω, dψ+ anddψ− are sufficient to know the intrinsic torsion.
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Finally, as examples ofSU(2n)-structures, we consider almost hyperhermitian manifolds
in Section4. We show that the exterior derivatives dωI , dωJ and dωK of the Kähler forms
are enough to compute the covariant derivatives∇ωI ,∇ωJ and∇ωK. This implies Hitchin’s
result[9] that ifωI ,ωJ andωK are closed, then they are covariant constant, i.e., the manifold
is hyperk̈ahler. Furthermore, we prove that locally conformal hyperkähler manifolds are
equipped with threeSU(2n)-structures of typeW4 ⊕W5, respectively associated with the
almost complex structuresI,JandK. As a consequence of this result, we obtain an alternative
proof of the Ricci flatness of the metric of hyperkähler manifolds.

2. Special almost Hermitian manifolds

An almost Hermitianmanifold is a 2n-dimensional manifoldM, n > 0, with aU(n)-
structure. This means thatM is equipped with a Riemannian metric〈·, ·〉 and an orthogonal
almost complex structureI. Each fibreTmM of the tangent bundle can be consider as
complex vector space by definingix = Ix. We will write TmMC when we are regarding
TmM as such a space.

We define a Hermitian scalar product〈·, ·〉C = 〈·, ·〉 + iω(·, ·), whereω is the K̈ahler
form given byω(x, y) = 〈x, Iy〉. The real tangent bundleTM is identified with the cotangent
bundleT ∗M by the mapx → 〈·, x〉 = x. Analogously, the conjugate complex vector space
TmMC is identified with the dual complex spaceT ∗

mMC by the mapx → 〈·, x〉C = xC. It
follows immediately thatxC = x+ iIx.

If we consider the spacesΛpT ∗
mMC of skew-symmetric complex forms, one can check

xC ∧ yC = (x+ iIx) ∧ (y + iIy). There are natural extensions of scalar products toΛpT ∗
mM

andΛpT ∗
mMC, respectively defined by

〈a, b〉 = 1
p!

2n∑
i1,...,ip=1

a(ei1, . . . , eip )b(ei1, . . . , eip ),

〈aC, bC〉C = 1
p!

n∑
i1,...,ip=1

aC(ui1, . . . , uip )bC(ui1, . . . , uip ),

wheree1, . . . , e2n is an orthonormal basis for real vectors andu1, . . . , un is a unitary basis
for complex vectors.

The following conventions will be used in this paper. Ifb is a (0, s)-tensor, we write

I(i)b(X1, . . . , Xi, . . . , Xs) = −b(X1, . . . , IXi, . . . , Xs),

Ib(X1, . . . , Xs) = (−1)sb(IX1, . . . , IXs), iIb = (I(1) + · · · + I(s))b,
L(b) =

∑
1≤i<j≤s

I(i)I(j)b, s ≥ 2. (2.1)

A special almost Hermitianmanifold is a 2n-dimensional manifoldM with an SU(n)-
structure. This means that (M, 〈·, ·〉, I) is an almost Hermitian manifold equipped with a
complex volume formΨ = ψ+ + iψ− such that〈Ψ,Ψ 〉C = 1. Note thatI(i)ψ+ = ψ−.
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If e1, . . . , en is a unitary basis for complex vectors such thatΨ (e1, . . . , en) = 1, i.e.,
ψ+(e1, . . . , en) = 1 andψ−(e1, . . . , en) = 0, thene1, . . . , en, Ie1, . . . , Ien is an orthonor-
mal basis for real vectorsadaptedto theSU(n)-structure. Furthermore, ifA is a matrix
relating two adapted basis of anSU(n)-structure, thenA ∈ SU(n) ⊆ SO(2n). On the other
hand, it is straightforward to check

ωn = (−1)n(n+1)/2n! e1 ∧ · · · ∧ en ∧ Ie1 ∧ · · · ∧ Ien,

whereωn = ω ∧ . . .(n) ∧ω.
If we fix the formVol such that (−1)n(n+1)/2n! Vol = ωn as real volume form, it follows

next lemma.

Lemma 2.1. Let M be a special almost Hermitian2n-manifold, then

(i) ψ+ ∧ ω = ψ− ∧ ω = 0;
(ii) for n odd, we haveψ+ ∧ ψ− = −(−1)n(n+1)/22n−1Vol andψ+ ∧ ψ+ = ψ− ∧ ψ− =

0;
(iii) for n even, we haveψ+ ∧ ψ+ = ψ− ∧ ψ− = (−1)n(n+1)/22n−1Vol andψ+ ∧ ψ− = 0;
(iv) for n ≥ 2 and1 ≤ i < j ≤ n, I(i)I(j)ψ+ = −ψ+ andI(i)I(j)ψ− = −ψ−; and
(v) x ∧ ψ+ = Ix ∧ ψ− = −(Ix�ψ+) ∧ ω and x�ψ+ = Ix�ψ−, for all vector x, where�

denotes the interior product.

Proof. All parts follow by a straightforward way, taking the identities

ψ+ = Re(e1C ∧ · · · ∧ enC), ψ− = Im(e1C ∧ · · · ∧ enC), (2.2)

ω =
n∑
i=1

Iei ∧ ei, (2.3)

into account, wheree1, . . . , en, Ie1, . . . , Ien is an adapted basis to theSU(n)-structure. Note
that parts (ii) and (iii) can be given together by the equation

n!Ψ ∧ Ψ̄ = in(−1)n(n−1)/22nωn. �

We will also need to consider the contraction of ap-form b by a skew-symmetric con-
travariant two-vectorx ∧ y, i.e., (x ∧ y)�b(x1, . . . , xp−2) = b(x, y, x1, . . . , xp−2). When
n ≥ 2, it is obvious that (Ix ∧ y)�ψ+ = −(x ∧ y)�ψ−. Furthermore, let us note that there
are two Hodge star operators defined onM. Such operators, denoted by∗ and ∗C, are
respectively associated with the volume formsVol andΨ .

Relative to the real Hodge star operator, we have the following results.

Lemma 2.2. For any one-formµ we have

∗(∗(µ ∧ ψ+) ∧ ψ+) = ∗(∗(µ ∧ ψ−) ∧ ψ−) = −2n−2µ,

∗(∗(µ ∧ ψ−) ∧ ψ+) = − ∗ (∗(µ ∧ ψ+) ∧ ψ−) = 2n−2Iµ.
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Proof. The identities follow by direct computation, taking Eq(2.2) into account. �
We are dealing withG-structures whereG is a subgroup of the linear groupGL(m,R). If

M possesses aG-structure, then there always exists aG-connection defined onM. Moreover,
if (Mm, 〈·, ·〉) is an orientablem-dimensional Riemannian manifold andG is a closed and
connected subgroup ofSO(m), then there exists a unique metricG-connection∇̃ such that
ξx = ∇̃x − ∇x takes its values ing⊥, whereg⊥ denotes the orthogonal complement inso(m)
of the Lie algebrag of G and∇ denotes the Levi-Civita connection[13,4]. The tensorξ is
the intrinsic torsionof theG-structure and̃∇ is called theminimal G-connection.

ForU(n)-structures, the minimalU(n)-connection is given bỹ∇ = ∇ + ξ, with

ξXY = −1
2I(∇XI)Y. (2.4)

see[5]. SinceU(n) stabilises the K̈ahler formω, it follows that∇̃ω = 0. Moreover, the equa-
tion ξX(IY ) + I(ξXY ) = 0 implies∇ω = −ξω ∈ T ∗M ⊗ u(n)⊥. Thus, one can identify the
U(n)-components ofξ with theU(n)-components of∇ω.

For SU(n)-structures, we have the decompositionso(2n) = su(n) + R+ u(n)⊥, i.e.,
su(n)⊥ = R+ u(n)⊥. Therefore, the intrinsicSU(n)-torsionη+ ξ is such thatη ∈ T ∗M ⊗
R ∼= T ∗M andξ is still determined by Eq.(2.4). The tensorsω, ψ+ andψ− are stabilised
by theSU(n)-action, and∇̄ω = 0, ∇̄ψ+ = 0 and∇̄ψ− = 0, where∇̄ = ∇ + η+ ξ is the
minimal SU(n)-connection. Sincē∇ is metric andη ∈ T ∗M ⊗ R, we have〈Y, ηXZ〉 =
(Iη)(X)ω(Y,Z), whereη on the right side is a one-form. Hence

ηXY = Iη(X)IY. (2.5)

We can checkηω = 0, then from∇̄ω = 0 we obtain:

(i) for n = 1, ∇ω = −ξω ∈ T ∗M ⊗ u(1)⊥ = {0};
(ii) for n = 2, ∇ω = −ξω ∈ T ∗M ⊗ u(2)⊥ =W2 +W4;

(iii) for n ≥ 3, ∇ω = −ξω ∈ T ∗M ⊗ u(n)⊥ =W1 +W2 +W3 +W4;

where the summandsWi are the irreducibleU(n)-modules given by Gray and Hervella
[8] and+ denotes direct sum. In general, these spacesWi are also irreducible asSU(n)-
modules. The only exceptions areW1 andW2 whenn = 3. In fact, for that case, we have
the following decompositions into irreducibleSU(3)-components,

Wi =W+
i +W−

i , i = 1,2,

where the spaceW+
i (W−

i ) consists in those tensorsa ∈Wi ⊆ T ∗M ⊗Λ2T ∗M such that
the bilinear formr(a), defined by 2r(a) = 〈x�ψ+, y�a〉, is symmetric (skew-symmetric).

On the other hand, sincē∇ψ+ = 0 and∇̄ψ− = 0, we have∇ψ+ = −ηψ+ − ξψ+ and
∇ψ− = −ηψ− − ξψ−. Therefore, from Eqs.(2.4) and (2.5)we obtain the following ex-
pressions

−ηXψ+ = −nIη(X)ψ−, −ξXψ+ = 1
2(ei�∇Xω) ∧ (ei�ψ−),

−ηXψ− = nIη(X)ψ+, −ξXψ− = −1
2(ei�∇Xω) ∧ (ei�ψ+),

(2.6)

where the summation convention is used.
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It is obvious that−ηψ+ ∈W−
5 = T ∗M ⊗ ψ− and −ηψ− ∈W+

5 = T ∗M ⊗ ψ+. The
tensors−ξψ+ and−ξψ− are described in the following proposition, where we need to
consider the twoSU(n)-maps

0+, 0− : T ∗M ⊗ u(n)⊥ → T ∗M ⊗ΛnT ∗M

respectively defined by∇ · ω → 1/2 (ei�∇ · ω) ∧ (ei�ψ−) and ∇ · ω → −1/2 (ei�∇ ·
ω) ∧ (ei�ψ+). Likewise, we also consider theSU(n)-spaces [[λp,0]] = {Re(bC) | bC ∈
ΛpT ∗MC} of real p-forms. Thus, [[λ0,0]] = R, [[λ1,0]] = T ∗M and, forp ≥ 2, [[λp,0]] =
{b ∈ ΛpT ∗M|I(i)I(j)b = −b,1 ≤ i < j ≤ p}. We write [[λp,0]] in agreeing with notations
used in[13,5].

Proposition 2.3. For n ≥ 3, theSU(n)-maps0+ and0− are injective and

0+(T ∗M ⊗ u(n)⊥) = 0−(T ∗M ⊗ u(n)⊥) = T ∗M ⊗ [[λn−2,0]] ∧ ω.

For n = 2, the maps0+ and0− are not injective, being

ker 0+ = T ∗M ⊗ ψ−, ker 0− = T ∗M ⊗ ψ+,

0+(T ∗M ⊗ u(2)⊥) = 0−(T ∗M ⊗ u(2)⊥) = T ∗M ⊗ ω.

Proof. We considern ≥ 2. As the real metric〈·, ·〉 is Hermitian with respect toI, we have
I(∇Xω) = −∇Xω [8], for all vectorX. But this is equivalent to

∇Xω =
n∑

1≤i<j≤n
(aijRe(eiC ∧ ejC) + bijIm(eiC ∧ ejC)) ∈ [[λ2,0]] ,

wheree1, . . . , en, Ie1, . . . , Ien is an adapted basis. Taking(2.6) into account, it is straight-
forward to check

0+(∇Xω) = −
n∑

1≤i<j≤n
aijRe(∗C(eiC ∧ ejC)) ∧ ω

+
n∑

1≤i<j≤n
bijIm(∗C(eiC ∧ ejC)) ∧ ω ∈ [[λ2,0]] ∧ ω,

0−(∇Xω) = −
n∑

1≤i<j≤n
aijIm(∗C(eiC ∧ ejC)) ∧ ω

−
n∑

1≤i<j≤n
bijRe(∗C(eiC ∧ ejC)) ∧ ω ∈ [[λ2,0]] ∧ ω.

From these equations Proposition follows.�
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For sake of simplicity, forn ≥ 2, we denoteW0 = T ∗M ⊗ [[λn−2,0]] ∧ ω. Moreover,
we will consider the mapL : T ∗M ⊗ΛnT ∗M → T ∗M ⊗ΛnT ∗M defined by

L(b) = I(1)(I(2) + · · · + I(n+1))b. (2.7)

Proposition 2.3and above considerations give rise to the following theorem where we
describe the properties satisfied by theSU(n)-components of∇ψ+ and∇ψ−.

Theorem 2.4. Let M be a special almost Hermitian2n-manifold,n ≥ 4,with Kähler form
ω and complex volume formΨ = ψ+ + iψ−. Then

∇ψ+ ∈W0
1 +W0

2 +W0
3 +W0

4 +W−
5 ,

∇ψ− ∈W0
1 +W0

2 +W0
3 +W0

4 +W+
5 ,

whereW0
i = 0+(Wi) = 0−(Wi),W

+
5 = T ∗M ⊗ ψ+ andW−

5 = T ∗M ⊗ ψ−. The mod-
ulesW0

i are explicitly described by

W0
1 = {ei ⊗ Iei ∧ b ∧ ω + ei ⊗ ei ∧ I(1)b ∧ ω | b ∈ [[λn−3,0]]},
W0

2 = {b ∈W0 |L(b) = (n− 2)b and ã(b) ∧ ω = 0},
W0

1 +W0
2 = {b ∈W0 |L(b) = (n− 2)b},

W0
3 = {b ∈W0 | ã(b) = 0},
W0

4 = {ei ⊗ ((x ∧ ei)�ψ+) ∧ ω | x ∈ TM} = {ei ⊗ ((x ∧ ei)�ψ−) ∧ ω | x ∈ TM},
W0

3 +W0
4 = {b ∈W0 |L(b) = −(n− 2)b},

whereã denotes the alternation map.

Proof. Some parts of Theorem follow by computing the image0+(∇ω)i of theWi-part of
∇ω, taking the properties forWi given in[8] into account, and others, with Schur’s Lemma
[2] in mind, by computing0+(a), where 0�= a ∈Wi. �

If we consider the alternation maps ˜a± : W0 +W∓
5 → Λn+1T ∗M, we get the following

consequences ofTheorem 2.4.

Corollary 2.5. For n ≥ 4, the exterior derivatives ofψ+ andψ− are such that

dψ+,dψ− ∈ T ∗M ∧ [[λn−2,0]] ∧ ω =Wa
1 +Wa

2 +Wa
4,5,

where ã±(W0
1 ) =Wa

1, ã±(W0
2 ) =Wa

2 and ã±(W0
4 ) = ã±(W∓

5 ) =Wa
4,5. Moreover,

ker(ã±) =W0
3 +A±, where T ∗M ∼= A± ⊆W0

4 +W∓
5 , and the modulesWa

i are de-
scribed by

Wa
1 = [Λn−3,0] ∧ ω ∧ ω,
Wa

2 = {b ∈ T ∗M ∧ [[λn−2,0]] ∧ ω | b ∧ ω = 0 and∗ b ∧ ψ+ = 0 }
= {b ∈ T ∗M ∧ [[λn−2,0]] ∧ ω | b ∧ ω = 0 and∗ b ∧ ψ− = 0 },
Wa

4,5 = T ∗M ∧ ψ+ = T ∗M ∧ ψ− = [[λn−1,0]] ∧ ω.
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Note also that

Wa
1 +Wa

2 = {b ∈ T ∗M ∧ [[λn−2,0]] ∧ ω | ∗ b ∧ ψ+ = 0}
= {b ∈ T ∗M ∧ [[λn−2,0]] ∧ ω | ∗ b ∧ ψ− = 0},

Wa
2 +Wa

4,5 = {b ∈ T ∗M ∧ [[λn−2,0]] ∧ ω | b ∧ ω = 0}.
In this point we already have all the ingredients to explicitly describe the one-formη.

This will complete the definition of theSU(n)-connection∇̄.

Theorem2.6. For anSU(n)-structure,n ≥ 2, theW5-partη of the torsion can be identified
with−ηψ+ = −nIη⊗ ψ− or −ηψ− = nIη⊗ ψ+, whereη is a one-form such that

∗(∗dψ+ ∧ ψ+ + ∗dψ− ∧ ψ−) = n2n−1η+ 2n−2Id∗ω,

or

∗(∗dψ+ ∧ ψ− − ∗dψ− ∧ ψ+) = n2n−1Iη− 2n−2d∗ω.

Furthermore, ifn ≥ 3, then ∗dψ+ ∧ ψ+ = ∗dψ− ∧ ψ− and ∗dψ+ ∧ ψ− = − ∗ dψ− ∧
ψ+.

Proof. We prove the result forn ≥ 4 and we will see the casesn = 2,3 in next section. The
W4-part of∇ω is given by 2(n− 1)(∇ω)4 = ei ⊗ ei ∧ d∗ω + ei ⊗ Iei ∧ Id∗ω [8]. Then,
by computing0+(∇ω)4, we get

(∇ψ+)4 = − 1

2(n− 1)
ei ⊗ ((d∗ω ∧ ei)�ψ+) ∧ ω. (2.8)

Now, since (∇ψ+)5 = −nIη⊗ ψ−, we have

ã+((∇ψ+)4 + (∇ψ+)5) = −1
2(d∗ω�ψ+) ∧ ω − nIη ∧ ψ− = −( 1

2Id
∗ω + nη) ∧ ψ+.

Hence, theWa
4,5-part of dψ+ is given by

(dψ+)4,5 = −(nη+ 1
2Id

∗ω) ∧ ψ+, (2.9)

Finally, takingLemma 2.2into account, it follows

∗(∗dψ+ ∧ ψ+) = ∗((dψ+)4,5 ∧ ψ+) = n2n−2η+ 2n−3Id∗ω,
∗(∗dψ+ ∧ ψ−) = ∗((dψ+)4,5 ∧ ψ−) = n2n−2Iη− 2n−3d∗ω.

The identities for dψ− can be proved in a similar way.�

Remark 2.7.

(i) It is known thatId∗ω = ∗(∗dω ∧ ω) = −〈·�dω,ω〉. Therefore,Theorem 2.6says that,
for n ≥ 3, η can be computed from dω and dψ+ ( or dψ−). Forn = 2, we will need
dω, dψ+ anddψ− to determine the one-formη.
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(ii) From Eq.(2.9), it follows thatA+ ⊆ ker(ã+) is given by

A+ =
{

− 1

2(n− 1)
ei ⊗ ((x ∧ ei)�ψ+) ∧ ω − 1

2
x⊗ ψ− | x ∈ TM

}
.

Analogously, forA− ⊆ ker(ã−), we have

A− =
{

− 1

2(n− 1)
ei ⊗ ((x ∧ ei)�ψ−) ∧ ω + 1

2
x⊗ ψ+ | x ∈ TM

}
.

Since dω ∈W1 +W3 +W4 and dψ+, dψ− ∈Wa
1 +Wa

2 +Wa
4,5, all the information

about the intrinsic torsion of anSU(n)-structure,n ≥ 4, is contained in dω and dψ+ (or
dψ−). We recall that, for aU(n)-structure,n ≥ 2, we need the Nijenhuis tensor and dω to
have the complete information about the intrinsic torsion. Eq.(2.8)andTheorem 2.6give
us the componentsW4 andW5 of ∇ψ+ in terms of dω and dψ+. For sake of completeness,
we will compute the remaining parts of∇ψ+ in terms of dω and dψ+. To achieve this,
let us study the behavior of the coderivatives d∗ψ+, d∗ψ− and the forms d∗ωψ+ and d∗ωψ−
respectively defined by the contraction of∇ψ+ and∇ψ− byω, i.e.,

d∗
ωψ+(Y1, . . . , Yn−1) = ∇eiψ+(Iei, Y1, . . . , Yn−1)

and an analog expression gives d∗
ωψ−.

Note that d∗ψ+ = − ∗ d ∗ ψ+ and d∗ψ− = − ∗ d ∗ ψ−. By Lemma 2.1, whenn is odd
(even), ∗ψ+ = −(−1)n(n+1)/2ψ− and ∗ψ− = (−1)n(n+1)/2ψ+ (∗ψ+ = (−1)n(n+1)/2ψ+
and∗ψ− = (−1)n(n+1)/2ψ−). Therefore, byCorollary 2.5, it is immediate that

d∗ψ+,d∗ψ− ∈ ∗(T ∗M ∧ [[λn−2,0]] ∧ ω) =W c
1 +W c

2 +W c
4,5,

where the modulesWc
i are described in the following lemma.

Lemma 2.8. For n ≥ 4,Wc = ∗(T ∗M ∧ [[λn−2,0]] ∧ ω) and L the map defined by(2.1),
the modulesW c

1 ,W c
2 andW c

4,5 are defined by:

W c
1 = [[λn−3,0]] ∧ ω,
W c

2 = {a ∈Wc | a ∧ ω ∧ ω = 0and a ∧ ψ+ = 0},
W c

1 +W c
2 = {a ∈Wc| − 2L(a) = (n− 2)(n− 5)a} = {a ∈Wc|a ∧ ψ+ = 0},

W c
4,5 = [Λn−1,0] = {x�ψ+ | x ∈ TM},
W c

2 +W c
4,5 = {a ∈Wc|a ∧ ω ∧ ω = 0}.

Proof. It follows by applying∗ to theWa
i modules ofCorollary 2.5.

For the description ofW c
1 +W c

2 involving the mapL. Taking Proposition 2.3into
account, we consider∇ψ+ = x⊗ b ∧ ω ∈ T ∗M ⊗ [[λn−2,0]] ∧ ω. Now, making use of
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Theorem 2.4, we obtain theW0
1 +W0

2 -part of∇ψ+,

(∇ψ+)1,2 = (n− 2)∇ψ+ + L(∇ψ+)

2(n− 2)
= 1

2
(x⊗ b ∧ ω + Ix⊗ I(1)b ∧ ω). (2.10)

Then, we compute (d∗ψ+)1,2 = d∗(∇ψ+)1,2 and check−2L(d∗ψ+)1,2 = (n− 2)(n−
5)(d∗ψ+)1,2. �

In the following result, (d∗ψ+)i and (d∗ωψ+)i ( (d∗ψ−)i and (d∗ωψ−)i ) respectively denote
the images by the maps d∗ and d∗ω of theWi-component of∇ψ+ (∇ψ−). This notation for
theWi-part of a tensor will be used in the following.

Lemma 2.9. For n ≥ 3 and the mapiI given by(2.1), the formsd∗ψ+, d∗ψ−, d∗
ωψ+ and

d∗
ωψ+ satisfy:

(d∗ψ+)1,2 = −(d∗
ωψ−)1,2, (d∗

ωψ+)1,2 = (d∗ψ−)1,2,

(d∗ψ+)4 = (d∗
ωψ−)4, (d∗

ωψ+)4 = −(d∗ψ−)4,

(d∗ψ+)5 = −(d∗
ωψ−)5 = nη�ψ+, (d∗

ωψ+)5 = −(d∗ψ−)5 = nη�ψ−,
iI (d∗ψ±)1,2 = (n− 3)(d∗

ωψ±)1,2, iI (d∗
ωψ±)1,2 = −(n− 3)(d∗ψ±)1,2,

iI (d∗ψ±)4 = −(n− 1)(d∗
ωψ±)4, iI (d∗

ωψ±)4 = (n− 1)(d∗ψ±)4.

Proof. Here we only considern ≥ 4, the proof forn = 3 will be shown in next section.
The identities of fourth and fifth lines follow by similar arguments to those contained in the
proof ofLemma 2.8. The identities of the third line follow by a straightforwardly way.

Making use of the maps0+,0− and Eq.(2.6), we note

(∇ · ψ−)1,2 = (∇I · ψ+)1,2, (∇ · ψ−)3,4 = −(∇I · ψ+)3,4. (2.11)

Hence, applying the maps d∗ and d∗ω to both sides of these equalities, the identities of first
and second lines in Lemma follow.�

We know how to compute (∇ψ+)4 and (∇ψ+)5 (Eq.(2.8)andTheorem 2.6) . Now, we
will show expressions for the remainingSU(n)-parts of∇ψ+ in terms of dω and dψ+.

Proposition 2.10. Let M be a special almost Hermitian 2n-manifold, n ≥ 4.Then

(i) (∇ · ψ+)1 = ei ⊗ Iei ∧ b ∧ ω + ei ⊗ ei ∧ I(1)b ∧ ω, (dψ+)1 = −2b ∧ ω ∧ ω, (d∗
ψ+)1 = 2I(1)b ∧ ω and (d∗

ωψ+)1 = −2b ∧ ω, where b is given by b =
Im(∗C((∇ω)1 + iI(1)(∇ω)1)), 12(−1)nb = I ∗ (dψ+ ∧ ω), 12(−1)nI(1)b = I ∗ (d∗
ψ+ ∧ ω ∧ ω), or 12(−1)n−1b = I ∗ (d∗

ωψ+ ∧ ω ∧ ω);
(ii) (∇ · ψ+)2 = ei ⊗ ei�(d∗

ωψ+)1,2 ∧ ω + ei ⊗ Iei�(d∗ψ+)1,2 ∧ ω − 8(∇ψ+)1, where
4(n− 2)(a)1,2 = (n− 1)(n− 2)a+ 2L(a), for a = d∗ψ+,d∗

ωψ+;
(iii) 2(∇ · ψ+)3 = 0+((1 − I(2)I(3))(dω)3), where(dω)3 = (dω)3,4 − (dω)4 with 4(dω)3,4

= 3dω + L(dω) and(n− 1)(dω)4 = −Id∗ω ∧ ω.
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Proof. By Theorem 2.4, (∇ · ψ+)1 = ei ⊗ Iei ∧ b ∧ ω + ei ⊗ ei ∧ I(1)b ∧ ω, whereb ∈
[[λn−3,0]]. Therefore, (dψ+)1 = −2b ∧ ω ∧ ω. On the other hand, it is not hard to check

∗ (c ∧ ω ∧ ω ∧ ω) = 6(−1)n−1Ic, (2.12)

for all c ∈ [[λn−3,0]]. Therefore, taking this last identity into account, we have

∗(dψ+ ∧ ω) = ∗((dψ+)1 ∧ ω) = 12(−1)n−1Ib.

Now, let us assume∇ω = c ∈ [[λ3,0]] =W1. Then, computing0+(c), we have

0+(c) = ei ⊗ Iei ∧ Im(∗C(c + iI(1)c)) ∧ ω − ei ⊗ ei ∧ Re(∗C(c + iI(1)c)) ∧ ω.

Hence the first identity forb follows. The remaining identities of (i) involving d∗ψ+ and
d∗
ωψ+ follow by a straightforward way from (∇ψ+)1, taking Eq.(2.12)into account.

For part (ii). If ∇ψ+ = x⊗ b ∧ ω ∈ T ∗M ⊗ [[λn−2,0]], by Eq. (2.10), we have
2(∇ψ+)1,2 = (x⊗ b ∧ ω + Ix⊗ I(1)b ∧ ω). Therefore, making use of part (i), it follows

6(∇ψ+)1 = ei ⊗ Iei ∧ (x�I(1)b) ∧ ω + ei ⊗ ei ∧ I(1)(x�I(1)b) ∧ ω.

Moreover,

2(d∗ψ+)1,2 = Ix ∧ b− x ∧ I(1)b− 2(x�b) ∧ ω, (2.13)

2(d∗
ωψ+)1,2 = x ∧ b+ Ix ∧ I(1)b− 2(x�b) ∧ ω. (2.14)

From these equations, it is not hard to check

ei ⊗ ei�(d∗
ωψ+)1,2 ∧ ω + ei ⊗ Iei�(d∗ψ+)1,2 ∧ ω = 2(∇ψ+)1,2 + 6(∇ψ+)1.

Hence the first identity of (ii) follows. Furthermore, byLemma 2.8, we have the equalities

−2L(d∗ψ+)1,2 = (n− 2)(n− 5)(d∗ψ+)1,2,

−2L(d∗ψ+)4,5 = (n− 1)(n− 2)(d∗ψ+)4,5.

Therefore,

4(n− 2)(d∗ψ+)1,2 = (n− 1)(n− 2)d∗ψ+ + 2L(d∗ψ+),

4(n− 2)(d∗ψ+)4,5 = −(n− 2)(n− 5)d∗ψ+ − 2L(d∗ψ+).

The required expression for (d∗
ωψ+)1,2 can be deduced in a similar way.

Finally, part (iii) follows from identities for∇ω given in[6,8]. �

Remark 2.11.

(i) From the identities given inLemma 2.9, the forms d∗ψ+ and d∗ωψ+ can be computed in
terms of dψ+ (dψ−). ThusProposition 2.10corroborates our claiming that, forn ≥ 4,
dω and dψ+ (dψ−) are enough to know the intrinsicSU(n)-torsion.
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(ii) Taking Eq. (2.11) into account, it is not hard to deduce the respectiveSU(n)-
components,n ≥ 4, of ∇ψ− from those of∇ψ+.

Relative with conformal changes of metric, we point out the following facts which are
generalizations of results forSU(3)-structures proved by Chiossi and Salamon[3].

Proposition 2.12. For conformal changes of metric given by〈·, ·〉o = e2f 〈·, ·〉, theW4 and
W5 parts of the intrinsicSU(n)-torsion,n ≥ 2,are modified in the way

Id∗ωo = Id∗ω − 2(n− 1)df, ηo = η− 1

n
df,

whereωo andηo are respectively the K¨ahler form and theW5 one-form of the metric〈·, ·〉o.
Moreover, the one-form2n(n− 1)η− Id∗ω is not altered by such changes of metric.

Proof. On one hand, the equation forId∗ωo was deduced in[8]. On the other hand, from
ψ+o = enfψ+ andψ−o = enfψ−, we have dψ+o = nenfdf ∧ ψ+ + enfdψ+ and dψ−o =
nenfdf ∧ ψ− + enfdψ−. Moreover, if∗o is the Hodge star operator for〈·, ·〉o andα is a
p-form, then∗oα = e2(n−p)f ∗ α. Taking this last identity into account, we deduce

∗o(∗odψ+o ∧ ψ+o) + ∗o(∗odψ−o ∧ ψ−o)

= ∗(∗dψ+ ∧ ψ+) + ∗(∗dψ− ∧ ψ−) − n2n−1df.

The required identity forηo follows from this last identity andTheorem 2.6. Finally, it is
obvious that 2n(n− 1)ηo − Id∗ωo = 2n(n− 1)η− Id∗ω. �

Remark 2.13. By Proposition 2.12, for n = 3, the one-form 12η− Id∗ω is not altered
by conformal changes of metric. In[3], Chiossi and Salamon consider six-dimensional
manifolds withSU(3)-structure and prove that the tensor 3τW4 + 2τW5 is not modified under
conformal changes of metric, whereτW4 andτW5 are one-forms such that, in the terminology
here used, are given by 2τW4 = −Id∗ω and 2τW5 = η+ Id∗ω. Note that 3τW4 + 2τW5 =
1
2(12η− Id∗ω).

3. Low dimensions

In this section we consider special almost Hermitian manifolds of dimension two, four
and six.

3.1. Six dimensions

Here we focus our attention on the very special case of six-dimensional manifolds with
SU(3)-structure (see[3]). In this case, we have

∇ω ∈ T ∗M ⊗ u(3)⊥ =W+
1 +W−

1 +W+
2 +W−

2 +W3 +W4. (3.1)
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If we denote [T ∗MC ⊗C Λ2T ∗MC] = {Re(bC) | bC ∈ T ∗MC ⊗C Λ2T ∗MC}, some
summands in(3.1)are described by

W+
1 = Rψ+, W−

1 = Rψ−,
W+

1 +W+
2 = {b ∈ [T ∗MC ⊗C Λ2T ∗MC] | 〈·�ψ+, ·�b〉 is symmetric},

W−
1 +W−

2 = {b ∈ [T ∗MC ⊗C Λ2T ∗MC] | 〈·�ψ+, ·�b〉 is skew-symmetric}.

By Proposition 2.3, theSU(3)-maps0+ and0− are injective and

0+(T ∗M ⊗ u(3)⊥) = 0−(T ∗M ⊗ u(3)⊥) = T ∗M ⊗ T ∗M ∧ ω.
In the following theorem we describe properties of theSU(3)-components of∇ψ+ and
∇ψ−.

Theorem 3.1. Let M be a special almost Hermitian six-manifold with Kähler formω and
complex volume formΨ = ψ+ + iψ−. Then

∇ψ+ ∈W0;a
1 +W0;b

1 +W0;a
2 +W0;b

2 +W0
3 +W0

4 +W−
5 ,

∇ψ− ∈W0;a
1 +W0;b

1 +W0;a
2 +W0;b

2 +W0
3 +W0

4 +W+
5 ,

where W0;a
i = 0+(W+

i ) = 0−(W−
i ), W0;b

i = 0+(W−
i ) = 0−(W+

i ), i = 1,2; W0
j =

0+(Wj) = 0−(Wj), j = 3,4; W+
5 = T ∗M ⊗ ψ+ and W−

5 = T ∗M ⊗ ψ−. If W0 =
T ∗M ⊗ T ∗M ∧ ω, L is the map defined by(2.7) and ã denotes the alternation map, the
modulesW0;a

i ,W0;b
i andW0

j are described by

W0;a
1 = Rei ⊗ ei ∧ ω, W0;b

1 = Rei ⊗ Iei ∧ ω,
W0;a

2 = {b ∈W0| 〈b(ei, ei, ·, ·), ω〉 = 0, b(ei, Iei, ·, ·) = 0and L(b) = b},
W0;b

2 = {b ∈W0| 〈b(ei, Iei, ·, ·), ω〉 = 0, b(ei, ei, ·, ·) = 0and L(b) = b},
W0;a

1 +W0;b
1 +W0;a

2 +W0;b
2 = {b ∈W0 |L(b) = b},

W0
3 = {b ∈W0|L(b) = −b and ã(b) = 0},
W0

4 = {ei ⊗ ((x ∧ ei)�ψ+) ∧ ω|x ∈ TM} = {ei ⊗ ((x ∧ ei)�ψ−) ∧ ω|x ∈ TM},
W0

3 +W0
4 = {b ∈W0 |L(b) = −b}.

Proof. We can proceed in a similar way as in the proof ofTheorem 2.4. �
If we consider the alternation maps ˜a± : T ∗M ⊗ T ∗M ∧ ω +W∓

5 → Λ4T ∗M, we get
the following consequences ofTheorem 3.1.

Corollary 3.2. For SU(3)-structures, the exterior derivatives ofψ+ andψ− are such that

dψ+,dψ− ∈ Λ4T ∗M =Wa
1 +Wa

2 +Wa
4,5,

where ã±(W0;b
1 ) =Wa

1, ã±(W0;b
2 ) =Wa

2 and ã±(W0
4 ) = ã±(W∓

5 ) =Wa
4,5. Moreover,

Ker(ã±) =W0;a
1 +W0;a

2 +W0
3 +A±, whereT ∗M ∼= A± ⊆W0

4 +W∓
5 , and the mod-
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ulesWa
i are described by

Wa
1 = Rω ∧ ω,
Wa

2 = su(3) ∧ ω = {b ∈ Λ4T ∗M | b ∧ ω = 0and ∗ b ∧ ψ+ = 0 }
= {b ∈ Λ4T ∗M | b ∧ ω = 0and ∗ b ∧ ψ− = 0 },

Wa
4,5 = T ∗M ∧ ψ+ = T ∗M ∧ ψ− = [[λ2,0]] ∧ ω
= {x�ψ+ ∧ ω | x ∈ TM} = {x�ψ− ∧ ω | x ∈ TM}.

Moreover, we also have

Wa
1 +Wa

2 = {b ∈ Λ4T ∗M | ∗ b ∧ ψ+ = 0} = {b ∈ Λ4T ∗M | ∗ b ∧ ψ− = 0},
Wa

2 +Wa
4,5 = {b ∈ Λ4T ∗M | b ∧ ω = 0}.

In this point, one can proceed as in the proof, for high dimensions, ofTheorem 2.6and
obtain the results of such Theorem forn = 3. Along such a proof we would get

(∇ψ+)4 = 0+(∇ω)4 = −1
4ei ⊗ ((d∗ω ∧ ei)�ψ+) ∧ ω, (3.2)

(dψ+)4,5 = −(3η+ 1
2Id

∗ω) ∧ ψ+. (3.3)

Likewise, in a similar way, we would also obtain

(∇ψ−)4 = 0−(∇ω)4 = −1
4ei ⊗ ((d∗ω ∧ ei)�ψ−) ∧ ω, (3.4)

(dψ−)4,5 = −(3η+ 1
2Id

∗ω) ∧ ψ−. (3.5)

Remark 3.3.

(i) From Eq.(3.3), it follows thatA+ ⊆ ker(ã+) is given by

A+ = {−1
4ei ⊗ ((x ∧ ei)�ψ+) ∧ ω − 1

2x⊗ ψ− | x ∈ TM}.

Analogously, from Eq.(3.3), forA− ⊆ ker(ã−), we have

A− = {−1
4ei ⊗ ((x ∧ ei)�ψ−) ∧ ω + 1

2x⊗ ψ+ | x ∈ TM}.

(ii) Theorem 2.6says thatη can be computed from dω and dψ+ (dψ−). Moreover, since
dω ∈W+

1 +W−
1 +W3 +W4 and

dψ+ ∈Wa
1 +Wa

2 +Wa
4,5 = ã+◦0+(W−

1 +W−
2 +W4) + ã+(W−

5 ),

dψ− ∈Wa
1 +Wa

2 +Wa
4,5 = ã−◦0−(W+

1 +W+
2 +W4) + ã−(W+

5 ),

we need dω, dψ+ and dψ− to have the whole information about the intrinsicSU(3)-
torsion.
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TheW4 andW5 parts of∇ψ+ are given by Eq.(3.2)andTheorem 2.6. As in the previous
section, for sake of completeness, we will see how to compute the remaining parts of∇ψ+
by using dω, dψ+ and dψ−. For such a purpose, we study properties of the coderivatives
d∗ψ+, d∗ψ− and the two-forms d∗ωψ+ and d∗ωψ−. Note that, byLemma 2.1, we have
d∗ψ+ = ∗dψ− and d∗ψ− = − ∗ dψ+. Therefore,

d∗ψ+,d∗ψ−,d∗
ωψ+,d∗

ωψ− ∈ Λ2T ∗M =W c
1 +W c

2 +Wc
4,5,

whereW c
1 = ∗(Wa

1),Wc
2 = ∗(Wa

2) andWc
4,5 = ∗(Wa

4,5).

Lemma 3.4. For SU(3)-structures, the modulesWc
1,W c

2 andW c
4,5 are defined by:

W c
1 = Rω, W c

2 = {b ∈ Λ2T ∗M | b ∧ ω ∧ ω = 0and b ∧ ψ+ = 0},
W c

1 +W c
2 = {b ∈ Λ2T ∗M | Ib = b} = {b ∈ Λ2T ∗M | b ∧ ψ+ = 0},

W c
4,5 = [[λ2,0]] = {x�ψ+ | x ∈ TM},
W c

2 +Wc
4,5 = {b ∈ Λ2T ∗M | b ∧ ω ∧ ω = 0}.

Proof. It follows by similar arguments as in the proof ofLemma 2.8. �

Now one can prove the identities given inLemma 2.9for n = 3. Such a proof can be
constructed in a similar way that the one forn ≥ 4, taking analog results forSU(3)-structures
into account. Such identities will be used in the following proposition, where we compute
someSU(3)-parts of∇ψ+.

Proposition 3.5. Let M be a special almost Hermitian six-manifold. Then

(i) (∇ · ψ+)1;a = −w+
1 ei ⊗ ei ∧ ω, (dψ−)1 = 2w+

1 ω ∧ ω and(d∗ψ+)1 = 4w+
1 ω,where

w+
1 is given by12w+

1 = ∗(dψ− ∧ ω) = 〈∗dψ−, ω〉 or (∇ω)1;+ = w+
1 ψ+;

(ii) (∇ · ψ+)1;b = w−
1 ei ⊗ Iei ∧ ω, (dψ+)1 = −2w−

1 ω ∧ ω and (d∗ψ−)1 = 4w−
1 ω,

wherew−
1 is given by−12w−

1 = ∗(dψ+ ∧ ω) = 〈∗dψ+, ω〉 or (∇ω)1;− = w−
1 ψ− ;

(iii) 4(∇ · ψ+)1,2;a = −〈∗dψ−, ω〉 ei ⊗ ei ∧ ω + ιω(I(2) − I(1)) ∗ dψ−, where ιω : T ∗
M ⊗ T ∗M → T ∗M ⊗ T ∗M ∧ ω defined byιω(a⊗ b) = a⊗ b ∧ ω;

(iv) −4(∇ · ψ+)1,2;b = 〈∗dψ+, ω〉 ei ⊗ Iei ∧ ω + ιω(1 + I(1)I(2)) ∗ dψ+ and−2(dψ+)1,2
= −〈∗dψ+, ω〉ω ∧ ω + ω ∧ (1 + I(1)I(2)) ∗ dψ+ ;

(v) 2(∇ · ψ+)3 = 0+((1 − I(2)I(3))(dω)3), where (dω)3 = (dω)3,4 − (dω)4 with
4(dω)3,4 = 3dω + L(dω) and2(dω)4 = −Id∗ω ∧ ω.

Proof. For part (i). If (∇ω)1;+ = w+
1 ψ+,w+

1 ∈ R, byTheorem 3.1, we obtain (∇ψ+)1;a =
0+(∇ω)1;+ = −w+

1 ei ⊗ ei ∧ ω and (∇ψ−)1;b = 0−(∇ω)1;+ = −w+
1 ei ⊗ Iei ∧ ω. There-

fore, (dψ−)1 = 2w+
1 ω ∧ ω. On the other hand, sinceω ∧ ω ∧ ω = 6Vol, we have∗(dψ− ∧

ω) = ∗((dψ−)1 ∧ ω) = 12w+
1 = 〈∗dψ−, ω〉.

For part (ii). By an analog way, since (∇ω)1;− = w−
1 ψ−, w−

1 ∈ R, we have
(∇·ψ+)1;b = 0+(∇ω)1;− = w−

1 ei ⊗ Iei ∧ ω. Therefore, (dψ+)1 = −2w−
1 ω ∧ ω. Hence

we have∗(dψ+ ∧ ω) = ∗((dψ+)1 ∧ ω) = −12w−
1 = 〈∗dψ+, ω〉.
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For part (iii). If ∇ψ+ = x⊗ y ∧ ω, by Theorem 3.1, we have

4(∇ψ+)1,2;a = x⊗ y ∧ ω + y ⊗ x ∧ ω + Ix⊗ Iy ∧ ω + Iy ⊗ Ix ∧ ω.

Therefore, 2(d∗ψ+)1,2 = −2〈x, y〉ω + Ix ∧ y − x ∧ Iy. Since 〈d∗ψ+, ω〉 = 12w+
1 =

−2〈x, y〉 and 2I(1)(d∗ψ+)1,2 = 2〈x, y〉 〈·, ·〉 − (x⊗ y + y ⊗ x+ Ix⊗ Iy + Iy ⊗ Ix), we
have

2ιωI(1)(d
∗ψ+)1,2 + 〈d∗ψ+, ω〉ei ⊗ ei ∧ ω = −4(∇ψ+)1,2;a.

On the other hand, sinceI(d∗ψ+)1,2 = −(d∗ψ+)1,2 andI(d∗ψ+)4,5 = −(d∗ψ+)4,5, it fol-
lows 2(d∗ψ+)1,2 = d∗ψ+ + Id∗ψ+. Thus,

ιω(I(1) − I(2))d
∗ψ+ + 〈d∗ψ+, ω〉ei ⊗ ei ∧ ω = −4(∇ψ+)1,2;a.

Finally, taking d∗ψ+ = ∗dψ− into account, the required identity in (iii) follows.
For part (iv). We proceed in a similar way as in the proof for (iii), but now we consider

4(∇ψ+)1,2;b = x⊗ y ∧ ω − y ⊗ x ∧ ω + Ix⊗ Iy ∧ ω − Iy ⊗ Ix ∧ ω

and we compute (d∗ωψ+)1,2. Thus we have 2(d∗ωψ+)1,2 = −2ω(x, y)ω + x ∧ y + Ix ∧ Iy.
Since (d∗ωψ+)1 = (d∗ψ−)1 = 4w−

1 ω = −2
3ω(x, y)ω, we obtain

2ιω(d∗
ωψ+)1,2 + 〈d∗

ωψ+, ω〉ei ⊗ Iei ∧ ω = 4(∇ψ+)1,2;b.

Finally, taking 2(d∗ωψ+)1,2 = 2(d∗ψ−)1,2 = d∗ψ− + Id∗ψ− and d∗ψ− = − ∗ dψ+ into ac-
count, it follows the first required identity in (iv). By alternating both sides of such an identity,
the second required equation follows. Part (v) follows as in the proof ofProposition 2.10
for (∇ψ+)3. �

Remark 3.6. From the maps0+,0− and identities(2.6), it is not hard to prove

(∇ · ψ−)1,2;a = (∇I · ψ+)1,2;b, (∇ · ψ−)1,2;b = −(∇I · ψ+)1,2;a,

(∇ · ψ−)3,4 = −(∇I · ψ+)3,4.

Thus, taking these identities into account, one can deduce the respectiveSU(3)-components
of ∇ψ− from those of∇ψ+.

The following results are relative to nearly Kähler six-manifolds.

Theorem 3.7. Let M be a special almost Hermitian connected six-manifold of typeW+
1 +

W−
1 +W5 which is not of typeW5 such that∇ω = w+

1 ψ+ + w−
1 ψ−, then
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(i) ∇ω is nowhere zero, α = (w+
1 )2 + (w−

1 )2 is a positive constant anddw+
1 = −w−

1 Iη,
dw−

1 = w+
1 Iη;

(ii) the one-formIη is closed and given by3αIη = w+
1 dw−

1 − w−
1 dw+

1 ;
(iii) M is of typeW+

1 +W−
1 if and only ifw+

1 andw−
1 are constant.

(iv) If M is of typeW+
1 +W5, then M is of typeW+

1 or of typeW5.
(v) If M is of typeW−

1 +W5, then M is of typeW−
1 or of typeW5.

Proof. SinceM is of dimension six, it is straightforward to check

(x�ψ+) ∧ ψ+ = (x�ψ−) ∧ ψ− = x ∧ ω ∧ ω = −2 ∗ Ix, (3.6)

(x�ψ+) ∧ ψ− = −(x�ψ−) ∧ ψ+ = Ix ∧ ω ∧ ω = 2 ∗ x, (3.7)

for all vectorx.
SinceM is of typeW+

1 +W−
1 +W5, we have

dω = 3w+
1 ψ+ + 3w−

1 ψ−, (3.8)

dψ+ = −2w−
1 ω ∧ ω − 3Iη ∧ ψ−, (3.9)

dψ− = 2w+
1 ω ∧ ω + 3Iη ∧ ψ+. (3.10)

Now, differentiating Eqs.(3.9) and (3.10)and using Eq.(3.8), we have

0 = 2(dw−
1 − 3w+

1 Iη) ∧ ω ∧ ω + 3dIη ∧ ψ−, (3.11)

0 = 2(dw+
1 + 6w−

1 Iη) ∧ ω ∧ ω + 3dIη ∧ ψ+. (3.12)

But dIη ∈ Λ2T ∗M = Rω + su(3) + u(3)⊥ and dIη u(3)⊥ = x�ψ+. Therefore,

dIη ∧ ψ+ = (x�ψ+) ∧ ψ+, dIη ∧ ψ− = (x�ψ+) ∧ ψ−.

Taking these identities into account and making use of Eqs.(3.6) and (3.7), from Eqs.(3.11)
and (3.12)it follows

3
2x = Idw−

1 + 3w+
1 η = −dw+

1 − w−
1 Iη. (3.13)

On the other hand, differentiating Eq.(3.8), making use of Eqs.(3.9) and (3.10), and
takingx ∧ ψ+ = Ix ∧ ψ− into account, we obtain

0 = (dw+
1 + 3w−

1 Iη− Idw−
1 − 3w+

1 η) ∧ ψ+.

Therefore, taking Eq.(3.13) into account, we getIdw−
1 + 3w+

1 η = dw+
1 + 3w−

1 Iη = 0.
Thus, dw−

1 = 3w+
1 Iη and dw+

1 = −3w−
1 Iη. Moreover, dα = 2(w+

1 dw+
1 + w−

1 dw−
1 ) = 0.

SinceM is connected, ifα �= 0 in some point, thenα �= 0 everywhere. Now, it is immediate
to check 3αIη = w+

1 dw−
1 − w−

1 dw+
1 and 3αdIη = 2dw+

1 ∧ dw−
1 = 0. Thus, parts (i) and

(ii) of Theorem are already proved.
Parts (iii), (iv) and (v) are immediate consequences of parts (i) and (ii).�

Remark 3.8. In [7], Gray proved that ifM is a connected nearly K̈ahler six-manifold (type
W1) which is not K̈ahler, thenM is an Einstein manifold such thatRic = 5α〈·, ·〉, where
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Ric denotes the Ricci curvature. In[12], showing an alternative proof of such Gray’s result,
we make use ofTheorem 3.7.

3.2. Four dimensions

Now, let us pay lead our attention to manifolds withSU(2)-structure.

Theorem 3.9. Let M be a special almost Hermitian four-manifold with K¨ahler formω and
complex volume formΨ = ψ+ + iψ−. Then

∇ψ+ ∈ T ∗M ⊗ ω + T ∗M ⊗ ψ−, ∇ψ− ∈ T ∗M ⊗ ω + T ∗M ⊗ ψ+,

and0±(W2) = 0±(W4) = T ∗M ⊗ ω. In this case, the spaceW =W2 +W4 of covariant
derivatives ofω also admits the relevantSU(2)-decompositionW = T ∗M ⊗ ψ+ + T ∗M ⊗
ψ−, beingker 0+ = T ∗M ⊗ ψ− andker 0− = T ∗M ⊗ ψ+.

If we consider the one-formsξ+ andξ− defined by∇ω = ξ+ ⊗ ψ+ + ξ− ⊗ ψ−, i.e.,
ξ+ = 〈∇ · ω,ψ+〉 andξ− = 〈∇ · ω,ψ−〉. The two decompositions ofξ are related as fol-
lows:

(i) ξ ∈W2 if and only if ξ+ = Iξ−.
(ii) ξ ∈W4 if and only if ξ+ = −Iξ−.

Moreover, we have the following consequences of last Theorem.

Corollary 3.10. For SU(2)-structures, the exterior derivatives ofψ+, ψ− andω are such
that

dψ+ = −ξ+ ∧ ω − 2η ∧ ψ+ = (ξ+�ψ− − 2η) ∧ ψ+,
dψ− = −ξ− ∧ ω − 2η ∧ ψ− = −(ξ−�ψ+ + 2η) ∧ ψ−,
dω = (ξ+ − Iξ−) ∧ ψ+ = (ξ+�ψ− − ξ−�ψ+) ∧ ω.

Hence the one-formsξ+, ξ− andη satisfy

−ξ+�ψ− + 2η = ∗(∗dψ+ ∧ ψ+), ξ−�ψ+ + 2η = ∗(∗dψ− ∧ ψ−),

ξ−�ψ+ − ξ+�ψ− = ∗(∗dω ∧ ω).

Therefore, byLemma 2.2, we have

4η = ∗(∗dψ+ ∧ ψ+) + ∗(∗dψ− ∧ ψ−) − ∗(∗dω ∧ ω),

2ξ−�ψ+ = ∗(∗dψ− ∧ ψ−) − ∗(∗dψ+ ∧ ψ+) + ∗(∗dω ∧ ω),

2ξ+�ψ− = ∗(∗dψ− ∧ ψ−) − ∗(∗dψ+ ∧ ψ+) − ∗(∗dω ∧ ω).

Thus we can conclude that all the information about anSU(2)-structure is contained in
dω, dψ+ anddψ− . Moreover, from these identities, the equalities forn = 2 contained in
Theorem 2.6follow.
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By Proposition 2.12, for conformal changes of metric given by〈·, ·〉o = e2f 〈·, ·〉, we
haveId∗ωo = Id∗ω − 4df andηo = η− 1/2df . The one-formsξ+ andξ− are modified
in the wayξ+o = ξ+ − df�ψ−, ξ−o = ξ− + df�ψ+, whereξ+o andξ−o are the respective
one-forms corresponding to the metric〈·, ·〉o. In fact, such identities can be deduced taking
the expression 2∇oωo = e2f {2∇ω − ei ⊗ ei ∧ Idf − ei ⊗ Iei ∧ df } into account, where
∇o is the Levi-Civita connection of〈·, ·〉o.
3.3. Two dimensions

Finally, let us consider special almost Hermitian two-manifolds. For these manifolds we
have∇ω = 0. Therefore,

∇ψ+ = −Iη⊗ ψ− = −η+ψ− ⊗ ψ− + η−ψ+ ⊗ ψ− ∈ R+ R,
∇ψ− = Iη⊗ ψ+ = η+ψ− ⊗ ψ+ − η−ψ+ ⊗ ψ+ ∈ R+ R,

where η = η+ψ+ + η−ψ−. Furthermore, dψ+ = −η−ω ∈ Rω and dψ− = η+ω ∈ Rω.
Consequently,η+ = − ∗ dψ− andη− = ∗dψ+.

With respect to the curvature, ifK denotes the sectional curvature, it can be checked

K(ψ+, ψ−) = dIη(ψ+, ψ−) = dη+(ψ+) + dη−(ψ−) − η2
+ − η2

−.

For conformal changes of metric given by〈·, ·〉o = e2f 〈·, ·〉, the intrinsicSU(1)-torsion is
modified in the wayef η+o = η+ − df (ψ+) andef η−o = η− − df (ψ−), i.e.,ηo = η− df .

Remark 3.11. Let us consider an special almost Hermitian 2n-manifold,n ≥ 2, which is
Kähler (typeW5). In such manifolds we have

dψ+ = −nη ∧ ψ+ = −nIη ∧ ψ−, dψ− = −nη ∧ ψ− = nIη ∧ ψ+.

By differentiating these identities, it follows dη ∧ ψ+ = dη ∧ ψ− = 0 and dIη ∧ ψ+ =
dIη ∧ ψ− = 0. Therefore, dη,dIη ∈ su(n) + Rω.

4. Almost hyperhermitian geometry

A 4n-dimensional manifoldM is said to bealmost hyperhermitian, if M is equipped
with a Riemannian metric〈·, ·〉 and three almost complex structuresI, J , K satisfying
I2 = J2 = −1 andK = IJ = −JI, and〈AX,AY〉 = 〈X, Y〉, for allX, Y ∈ TxM andA =
I, J,K. This is equivalent to saying thatM has a reduction of its structure group toSp(n).
As it was pointed out in Section2, each fibreTmM of the tangent bundle can be consider
as complex vector space, denotedTmMC, by defining ix = Ix.

OnTmMC, there is anSp(n)-invariant complex symplectic form9IC = ωJ + iωK and
a quaternionic structure map defined byy → Jy. Taking our identification ofTMC with
T ∗MC, x → 〈·, x〉C = xC, into account (we recall〈·, ·〉C = 〈·, ·〉 + iωI (·, ·)), it is obtained
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9IC = JeiC ∧ eiC, wheree1, . . . , en, Je1, · · · , Jen is a unitary basis for vectors. Therefore,

9nIC = (−1)n(n+1)/2n! e1C ∧ · · · ∧ enC ∧ Je1C ∧ · · · ∧ JenC.
Hence, we can fixΨI = ψI+ + iψI−, defined by (−1)n(n+1)/2n! ΨI = 9n

IC
, as complex

volume form.
By cyclically permuting the r̂oles of I, J andK in the above considerations, we will

obtain two more complex volume formsΨJ andΨK. Thus,M is really equipped with three
SU(2n)-structures, i.e., the almost complex structuresI, JandK, the complex volume forms
ΨI , ΨJ , andΨK and the common metric〈·, ·〉. We could say thatM has aspecial almost
hyperhermitianstructure. Furthermore, we also have

(−1)n(n+1)/2(n− 1)! dΨI = (dωJ + idωK) ∧ (ωJ + iωK)n−1.

Hence, we can compute dψI+ and dψI− from dωJ and dωK. Likewise, making use of
considerations contained in Sections2 and 3, ∇ωI can be computed from dωI , dψI+ and
dψI−. By a cyclic argument, the same happens for∇ωJ and∇ωK.

Theorem 4.1. In an almost hyperhermitian manifold, the covariant derivatives∇ωI , ∇ωJ
and∇ωK of the Kähler forms and the covariant derivative∇Ω = 2

∑
A=I,J,K ωA ∧ ∇ωA

are determined by the exterior derivativesdωI , dωJ anddωK.

In other words, dωI , dωJ and dωK contain all the information about the intrinsic torsion of
anSp(n)-structure and the intrinsic torsion, determined by∇Ω ([14,10]), of the underlying
Sp(n)Sp(1)-structure. In relation with last Theorem, we recall Swann’s result[14] that, for
4n ≥ 12, all the information about the covariant derivative∇Ω is contained in the exterior
derivative dΩ = 2

∑
A=I,J,K ωA ∧ dωA. Furthermore, one of the consequences of previous

Theorem is the Hitchin’s result[9] that if the three K̈ahler formsωI , ωJ andωK of an
almost hyperhermitian manifold are all closed, then they are covariant constant. Almost
hyperhermitian manifolds with covariant constant Kähler forms are calledhyperkähler
manifolds. Such manifolds are Ricci-flat.

If the two almost Hermitian structures determined byI andJare locally conformal K̈ahler
(typeW4), then the one determined byK is also locally conformal K̈ahler[11]. Furthermore,
in such a case, the three structures have common Lee form. We recall that the Lee form is
defined byθA = −1/(2n− 1)Ad ∗ ωA, A = I, J,K [8]. Therefore, in such a situation we
really have alocally conformal hyperk¨ahlermanifold. Let us compute the intrinsic torsion
of theSU(2n)A-structures,A = I, J,K. ForA = I, we get

dΨI = 1

(−1)n(n+1)/2(n− 1)!
θ ∧ (ωJ + iωK)n = nθ ∧ ΨI,

whereθ = θI = θJ = θK. Therefore, dψI+ = nθ ∧ ψI+ and, byTheorem 2.6, we obtain
that theW5-part of the torsion is determined by

ηI = 1

2n(2n− 1)
Id∗ωI = − 1

2n
θ.
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Proceeding in a similar way forJandK, we obtainηI = ηJ = ηK. Furthermore, note that the
relevant one-form 2n(2n− 1)ηI − Id∗ωI , given byProposition 2.12, vanishes. In summary,
we have the following result.

Theorem 4.2. For a locally conformal hyperk¨ahler manifold of dimension4n and a non
null Lee-formθ, the threeSU(2n)-structures are of typeW4 +W5.Moreover, theW5-part
of each one of such structures is determined by the same one formη = −1/2n θ.

As consequences of this Theorem, we have some results relative to hyperkähler mani-
folds.

Corollary 4.3.

(i) If the threeSU(2n)-structures of an almost hyperhermitian4n-manifold are of type
W4, then the manifold is hyperk¨ahler.

(ii) For hyperkähler manifolds, the intrinsic torsion of eachSU(2n)-structure vanishes.

Remark 4.4. Special almost Hermitian manifolds with zero intrinsic torsion can be called
SU(n)-Kähler manifolds. The metric of such manifolds is Ricci flat. Thus,Corollary 4.3is
an alternative proof of the Ricci flatness of the hyperkähler metrics.
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